1. Prologue
2. Requirements
3. Basics of slot coating
4. Curtain Coating
5. Bead Coating
6. Conclusion

From Curtain Coating To Bead Mode Slot Die Coating – Contact Free Coating Procedures For Thin Functional Coating Layers

Presented by
D. Eggerath
“High Performance Coating” is only possible, if the process is completely understood in terms of physical aspects.
Areas of application

- Epoxy resin coating and impregnation for light construction materials
- Anodes, cathodes and separator film coatings for lithium ionic batteries
- Organic and printed electronics
- Nano layers ≥ 50 nm on flexible materials (nanotechnology)
- Membranes for water treatment and salt water desalination

High performance of the coating necessary:
- Coating **absent of defects**
- **Cross-Web Distribution** less than +/-1%
- **Coating thickness** must remain **constant** over **24h** of production

⇒ **Contactless and premetered coating**
Coating Methods

Self-Metered Coating Techniques

⇒ **Self-Metered-Coating** means that the applied *coating weight depends* on the process => e.g. Dip-Coating, Roller-Coating, Knife-Edge-Coating

Pre-Metered Coating Techniques

⇒ **Pre-Metered-Coating** means that the applied coating weight does **NOT** depend on the process => e.g. Slot-Die-Coating, Spray-Coating
Principle of pre-metered coating

Pre-metered means, that the wetfilm thickness does not depend on the process, e.g.:
- Surface tension, viscosity
- Distance between slot die and substrate

The coating weight can be controlled, if the following parameters are known:
- Massflow
- Substrate velocity
- Density of the coating fluid
- Coating Width

\[\dot{m} = \rho \cdot U_w \cdot h \cdot B \]

- \(\dot{m} \): Massflow
- \(U_w \): Substrate Velocity
- \(B \): Coating Width
- \(h \): Wetfilm thickness
- \(\rho \): Density
⇒ The cross-web distribution depends on the **design** and the **precision of the slot die**, but not so much on the process

⇒ Nevertheless the **process must be understood** in order to guarantee excellent coating qualities

\[
\dot{V} = \frac{\Delta p b^3}{12 \mu L}
\]

\[
\frac{\Delta \dot{V}}{\dot{V}} = 3 \frac{\Delta b}{b} + \frac{\Delta (\Delta p)}{\Delta p} - \frac{\Delta L}{L} - \frac{\Delta \mu}{\mu}
\]
Peripheral components

Most important components:
- Feed bin / vessel
- Pressure vessel or pump
- Filter Unit
- Massflow-Meter
- Slot Die

Big Advantages:
Closed System => NO contact with the atmosphere
NO recirculation of the fluid
NO evaporation of the fluid

AIMCAL 2012
Different Setups

- Web Tension Mode
- Extrusion Coating Mode
- Bead Coating Mode
- Short Curtain Coating Mode
- Long Curtain Coating Mode

⇒ !!! Process not understood => Trouble with the coating 😞
⇒ !!! Lets understand the process 😊
Stability regions of curtain coating

Curtain

Impingement-Zone

1. Prologue
2. Requirements
3. Basics of slot coating
4. Curtain Coating
5. Bead Coating
6. Conclusion
Curtain stability, I

Condition for a stable curtain: **Curtain Velocity** must be **higher** than the **velocity of the disturbance** (air, particle etc.)

\[V_T = \frac{2\sigma}{\rho b} \]

\[u > V_T \]

\[\dot{m}_c > \sqrt{2\sigma \rho b} \]

\(\sigma = \text{Surface Tension} \)
\(\rho = \text{Density} \)
\(b = \text{curtain thickness} \)
\(\dot{m}_c = \text{Minimum massflow} \)

⇒ Curtain stability depends on fluid properties and on the slot width
The minimum massflow, which is necessary to create a stable curtain, depends also on the viscosity.
Coatability depends strongly, among other parameters, on the impingement velocity, the substrate velocity and the viscosity.
Limitations of curtain coating

⇒ In order to coat 10 g/m² in curtain-mode the substrate velocity must be at least 650 m/min for low viscous media

⇒ How is it possible to coat less than 10 g/m² at substrate velocities of less than 100 m/min?
Principle of bead-coating

⇒ Operating the same slot die in bead-mode

- Characterized by:
 - Capillary forces acting between slot-die and the substrate
 - Distances between slot die and substrate of less than 1mm
 - Very low wet film thicknesses (~ 1µm) are possible at substrate speeds of less than 100 m/min
 - Wet film thicknesses can be obtained at substrate distances which are 300 times larger than the wetfilm thickness
Flow phenomena of bead-coating

- Flow between slot die and substrate is an overlapping flow of a shear-driven (a) and a pressure-driven flow (b)
- For \(d > 2h \) \(\Rightarrow \) A subpressure exists between slot die and substrate
- The back meniscus stabilizes the process

\(\Rightarrow \) Very low wet film thicknesses at moderate substrate distances
Coating Window (Operation)

- The calculation of coating windows helps to control the process
- The following parameters are important
 - Fluid parameters (viscosity, surface tension)
 - Process parameters (distance between slot die and substrate, wetfilm thickness, substrate velocity)
 - Lip length of the slot-die
In this example a maximum velocity of 20 m/min would be possible, without applying a subpressure at the back meniscus.

A wetfilm thickness of 12 µm (h) can be applied at a distance between the slot die and the substrate of 320µm (d) => d/h=26
Conclusion

⇒ **Slot Coating** is a *premetered* coating technique => wet film thickness does not depend on the process

⇒ A slot die can be *operated* in *different setups*, such as curtain-coating-mode or bead-coating-mode

⇒ Important is to *understand* the process

⇒ **Curtain Coating** => Curtain stability and coatability in the impingment zone are important

⇒ **Bead Coating** => Back meniscus must be able to stabilize the process

If you want to know whether **YOUR fluid** can be coated with a *slot die*? ...
Thank you for your attention!

For further information don’t hesitate to contact us any time:

info@kroenert.de