Curtain Coating
EDGE CONTROL

AIMCAL Fall Technical Conference
October 24, 2004
Robert I. Hirshburg, Ph.D., P.E.
Two-layer PSA coating - BASF Adhesive Research Center, Ludwigshafen, Germany
Curtain Coater Formats

Slot curtain coater

Slide curtain coater
Curtain Coating Characteristics – Resultant Benefits

CHARACTERISTICS:

• Pre-metered → accurate coating thickness

• Optimized, precision manifold → uniform CD coating thickness

• Relatively high liquid impingement momentum “hydrodynamic assist” → air entrainment onset shifted to high speeds
Process Characteristics – Resultant Benefits (continued)

• Robust impingement flow allowing coating
 – of uneven webs
 – over some splices
 – overboard of web edges
 – of unsupported web in spans

• Curtain height: large applicator-to-substrate clearance resulting in
 – relaxed clearance precision
 – no trapped particles
 – low substrate stress
 – projection coating giving contour coverage
Process Characteristics – Resultant Benefits
(continued)

• Laminar flow throughout & gravitational leveling on slide die surface
 PRECISION, SIMULTANEOUS MULTILAYER CAPABILITY
Limits of Operation - “Coating Window”

Puddling at impingement

Curtain disintegration

Air entrainment

Curtain stability

Volumetric Flow Rate/Width

Web Speed

Operating Window
Curtain coating process parameters

- Flow rate / width
- Surface tension (dynamic)
- Rheology
- Substrate characteristics (roughness, porosity)
- Curtain height
- Impingement angle
“Reduction to Practice”

- Air boundary layer suppression
- Shielding from spurious air currents
- Starting and interrupting curtain flows
- Curtain edge control
“Free” Curtain Edges

Curtain edge flow without active control: “Free” Edges
Lateral contraction
• Surface tension driven
 (balance of surface tension and falling liquid momentum)
• Effect worse with taller curtains
• Heavy flow along edges
Free Curtain Edges – no edge control

Applications not requiring curtain edge control:

Overboard Coatings
- Excess coating width
- Flow well above minimum for curtain stability
- Recirculate excess flow
 - Stable solution / suspension
 - Must be easy to recirculate—back to delivery or to prep
- Dispose of excess liquid
 - Inexpensive liquid
 - Inexpensive disposal treatment

Pilot Plant coater under operation 1200 m/min - graphic paper

Courtesy of Voith Papers
Edge Guide Systems

Applications requiring Curtain Edge Control

- **Inboard Coating** (inboard of web edges)
 - At least modest coating uniformity required
 - Expensive liquid (or too expensive to discard) and/or cannot recirculate (multilayer, PSA)
 - Dry edges required

- **Overboard Coating**
 - Reduce excess flow width: reduce waste (expensive liquid and expensive substrate) or amount to recirculate
 - Guided smooth flow to minimize foaming prior to recirculation

- **Low flow rate** (near minimum for curtain stability)
Curtain Edge Guides

- Edge guide basic task:
 Prevent curtain edge contraction

- **Ideal** Curtain Edge Guides:
 - Allow a flow field and its surface envelope identical to that present in the curtain interior
 - Result: no lateral gradients in important flow and geometrical parameters such as liquid velocity, curtain thickness, surface tension, etc.
 - Benefits: no curtain edge contraction, uniformity, resists air entrainment

- Reality:
 Solid boundary element
 A CHALLENGE!
Simple guide design – Rods/Wires

• Benefits:
 – Easy set-up
 – Adjustable
• Diameter effect
• Disadvantages:
 – Curtain detachment risk
 – Curtain guided start difficulty
 – Recovery from curtain movement difficulty
Simple guide design – Flat Plates

- Benefits/Advantages:
 - Curtain attachment more stable
 - Promotes automatic-start
 - Conducive to curtain transient motion
 - Allows curtain deflection with slide die

- Disadvantage:
 - Uniformity near edge (sensitive to static contact angle)
Simple guide design – Weaknesses

• Viscous drag along guide:
 – Blassius boundary layer
 – Deficit in edge region impingement momentum on web

Associated problems:
 – Premature air entrainment near edges
 – Curtain vulnerable to rupture near edges at lowest flow rates

• Non-uniform edge region coating
• Contamination/buildup on guide surface
Suitable applications for simple edge guides:

- Moderate coating speed
- Non-critical uniformity in edge region:
 - Excess drying/curing capacity
 - Product uniformity not critical
 - “Acceptable selvage” of off-quality edge lanes
- Non-contaminating liquids (or slowly contaminating liquids with short productions)
- Adjustable curtain height requirements
Challenging Edge Control Situations

- High Coating Speed (air entrainment near edges)
- Low flow rate (curtain stability)
- Critical uniformity required
- Complex and/or difficult rheologies (contaminating, sticky, etc)
- Multilayer application
- Slide-curtain coating (deflection to underside)
Guides with “Lubricating” Edge Layer

- Low viscosity solvent / water layer between solid guide surface and curtain liquid edge
- Contains velocity gradient in a relatively thin, low viscosity layer
- Allows greater acceleration of curtain-edge liquid
Edge flow – Additional benefits, but also challenges

Additional benefits:
– Promotes wetting attachment between coating liquid and edge guide surface
– Promotes auto-start of guided curtain edges
– Flushes and protects the guide surface from contaminating coating liquid

Challenges:
– Edge flow introduction without disturbing the curtain flow
 • Stationary wave in curtain
 • Inlet ports on curtain guides
 • Ports on slide flow edging plates
– Edge layer stability
 • Layer thickness
– Edge flow extraction
 • Suction ports
Guides With Edge Flow
example: Kodak’s Dual Wire Guides
Guides With Edge Flow
example: TSE’s Porous Plate Guides
“Problem Edges”

For those “Bad Edge Days”:

Heavy-edge Removal Devices
CONCLUDING OBSERVATIONS

- Curtain coating is an extremely capable thin liquid film coating method - arguably the best - if an application fits within its coating window.

- Actual curtain coating practice requires certain practical accompanying technologies such as capable manifold design, air handling and edge guides.

- Controlling curtain edges against surface-tension driven contraction is essential in most applications.

- Actual guides are not ideal, but satisfactory systems are available for most applications.
CLICK TO RETURN TO LIST OF PAPERS AND PRESENTATIONS