Rotatable Magnetron Sputtering in R2R Web Coating of Optical Layer Stacks

Holger Proehl, Martin Dimer, Michael Hentschel, Falk Otto, Johannes Struempfel

VON ARDENNE Anlagentechnik GmbH, Dresden

Oct. 2013, Charleston
VON ARDENNE Expertise
Main Product Lines for Large Area Coating

PIAnova for glass coating

GC60V for glass coating

GC330H for large-area glass coating

MSC1250 for metal strip coating
Rotatable Magnetron Sputtering in R2R Web Coating of Optical Layer Stacks

Outline

• Rotatable Magnetron Sputtering
• AC Sputtering of Dielectric Films
 • SiO₂ Sputtering (Impedance Control)
 • TiO₂, Nb₂O₅ Sputtering (Ceramic)
• DC Sputtering (TCO)
 • Aspects of ITO Sputtering
• Sputter Roll Coater for Polymer Films
 • Process Flexibility
 • Concepts of Compartment Units
• Summary
Rotatable Magnetron Process in DC or AC Mode

Overall Advantages

- **Lower running costs**
 - Better target usage (≥ 85% compared to ≤ 40% for planar targets)
 - Longer sputter campaigns
 - Higher deposition rates (higher max. power due to direct cooling)

- **Better process performance and stability**
 - No re-deposition zones → less particles, less arcing
 - No cross contamination by sputtering of target clamps
 - Easy adjustable magnetic fields
Rotatable Magnetron Sputtering in R2R Web Coating of Optical Layer Stacks

Outline

• Rotatable Magnetron Sputtering
• AC Sputtering of Dielectric Films
 • SiO$_2$ Sputtering (Impedance Control)
 • TiO$_2$, Nb$_2$O$_5$ Sputtering (Ceramic)
• DC Sputtering
 • Aspects of ITO Sputtering
• Sputter Roll Coater for Polymer Films
 • Process Flexibility
 • Concepts of Compartment Units
• Summary
Coating Technology – Process in AC Mode
Rotatable Dual Magnetron (RDM)

AC
Conductive targets ($\rho \leq 1 \ \Omega\text{cm}$), conductive and insulating layers
long-term stable processes (e.g. ZnO, SnO$_2$ or Si$_3$N$_4$)
Low Index Material SiO$_2$
Silicon Target with Reactive AC Sputtering

Planar with Re-deposition
Flaking \rightarrow Maintenance

Rotatable w/o Re-deposition
w/o Nodules less Maintenance

- Si planar target,
- Target thickness 10mm
- **AC** power density < 15 kW/m
- $ddr = 50$ nm*m/min per SDM
- Cleaning of target periodically
- **Severe re-deposition, flaking**

- Si rotatable target,
- Target thickness 9mm
- **AC** power density ≈ 20 kW/m
- $ddr = 140$ nm*m/min per RDM
- Clean target, minor maintenance
- **No flaking, no nodules**
Working Ranges for High Rate Reactive Sputtering

• Hysteresis for power $P = \text{constant}$

metallic mode

transition mode stabilization by fast control of reactive gas flow, only

reactive mode

voltage, rate, intensity

reactive gas flow

metallic mode

ITO
ZAO

TiO$_2$, Ta$_2$O$_5$, Nb$_2$O$_5$

TiN

SiO$_2$,

$\tau \approx 200 \text{ ms}$, only

In$_2$O$_3$, ZnO, Si$_3$N$_4$, SnO$_2$
Reactive **AC** Sputtering of SiO₂
Characteristics of O₂ Flow vs. AC Voltage

![Graph showing the relationship between O₂ Flow and AC Voltage for different power levels: 20 kW, 18 kW, 16 kW, and 14 kW. The graph has a horizontal line at 500V.]
Voltage Fed for Stabilization Working Points
– Simple Control Scheme –

Power setpoint → PID controlled gas inlet → Gas manifold → Sputter Process

Voltage setpoint → Power Supply controlled voltage → Target

Slow control loop, $\tau \sim 1\,\text{min}$

Fastest control loop, dependent on power supply, typ. $\tau \sim \text{ms range}$
Reactive AC Sputtering of SiO$_2$
O$_2$ Flow vs. Power, @ 500 V (no Hysteresis)

- Increased flow @ constant voltage
- \rightarrow Current / power increase \rightarrow Dep. rate increase
Voltage Fed Working Point Stabilization
– Gas Trimming –

• 5 Segmented fast acting gas inlet manifold
 ➔ Tuning of deposition rate homogeneously
 ➔ Tuning of reactive gas pumping locally
 ➔ Same reactive working points at all sites of target

Pumping speed at target end influenced by chamber geometry

Sputter rate slightly different due to deviations in target geometry (B-field strength varies with distance)
Reactive **AC** Sputtering of SiO$_2$
Partial Pressure Control (λ-probe)

- Dependency of deposition date (AC-MF) on lambda probe voltage U_λ

![Graph showing the relationship between lambda voltage and deposition rate.](image)
Reactive AC Sputtering of SiO$_2$
Partial Pressure Control: λ-probe

- Lambda Probe is an galvanic cell
 - Cell voltage = lambda voltage U_{λ} → Nernst Formula:

$$U_{\lambda} \sim \text{const.} \times \ln \left(\frac{p_{O_2}(\text{ambient})}{p_{O_2}(\text{process})} \right)$$
Reactive **AC** Sputtering of SiO₂
Partial Pressure Control \((\lambda\text{-probe})\)

- Dependency of cathode (AC) voltage and O₂ Flow on \(U_\lambda\)

Addition of some N₂ may be necessary to stabilize the process control at aggressive working points.
Reactive AC Sputtering of SiO$_2$
Segmented Fast Gas Inlet System

Fast Binary Manifold with 5 Segments
for fast response and precisely controlled gas inlet
with minimized stored amount of gas

Unpressurized \Leftrightarrow minimized amount of gas pV: pressure \times Volume
Rotatable Magnetron Sputtering in R2R Web Coating of Optical Layer Stacks

Outline

• Rotatable Magnetron Sputtering
• AC Sputtering of Dielectric Films
 • SiO₂ Sputtering (Impedance Control)
 • TiO₂, Nb₂O₅ Sputtering (Ceramic)
• DC Sputtering
 • Aspects of ITO Sputtering
• Sputter Roll Coater for Polymer Films
 • Process Flexibility
 • Concepts of Compartment Units
• Summary
High index Materials – Ceramic Targets
Uniformity Examples from Production

Nb\textsubscript{2}O\textsubscript{5}
- ddr up to 90nm*m/min w/o absorption
- Example: RDM 3750 (AC)

TiO\textsubscript{2}
- ddr ~ 55nm*m/min w/o absorption
- Example: RDM 3750 (AC)

→ Max. Deposition Rate is limited by max. applicable power (target / substrate)

compare T. Preussner et al., Nb\textsubscript{2}O\textsubscript{5} and TiO\textsubscript{2} thin films deposited by pulse magnetron of cylindrical ceramic targets, ICCG9 (2012)
Ceramic TiO2: AC vs. DC
Energy Impact at Substrate

AC dual
- $ddr \sim 55\text{nm}^*\text{m/min}$
- $T_{\text{web(max)}} \sim ?$

DC dual
- $ddr \sim 60\text{nm}^*\text{m/min}$
- $T_{\text{web(max)}} \sim ?$

Assumptions: PET 50µ, **Cooling drum: $T_{\text{CD}} = 0°C$**, heat transfer: $\alpha = 100 \text{ W/(m}^2\text{K)}$, 2m/min
Ceramic TiO2: AC vs. DC
Energy Impact at Substrate

AC dual (RDM)
- ddr \(\sim 55\text{nm*mm/min} \)
- \(T_{\text{web(max)}} \sim 61°C\)

DC dual (RSM-RSM)
- ddr \(\sim 58\text{nm*mm/min} \)
- \(T_{\text{web(max)}} \sim 29°C\)

Assumptions: PET 50\(\mu\), **Cooling drum**: \(T_{\text{CD}} = 0°C\), heat transfer: \(\alpha = 100 \text{ W/(m}^2\text{K)}\), 2m/min
Dual Anode Sputtering (DAS®)
Example: Dual DC Magnetron Lid (RSM-RSM)

• DC Sputter: up to 50% less energy impact to substrate
 ▶ Solution would be ideal for plastic webs and metal foils

• DC sputtering of transparent dielectrics: disappearing Anode problem
 ▶ Solution: Dual Anode Sputtering (DAS® / RAS) - Proven for planar and rotatable
Dual Anode Sputtering (DAS®)
Using a DC Power Supply and Active Switches
Industrial Application of DAS®
Ceramic Planar, Ceramic Rotatable

- i-ZnO with DC-pulse (rotatable)
- Example Nb₂O₅ (planar)

Thickness Uniformity (WSM2250)

G. Teschner et al., Dual Anode Magnetron Sputtering, 50th Annual SVC Technical Conference, 2007
Outline

• Rotatable Magnetron Sputtering
• AC Sputtering of Dielectric Films
 • SiO₂ Sputtering (Impedance Control)
 • TiO₂, Nb₂O₅ Sputtering (Ceramic)
• DC Sputtering
 • Aspects of ITO Sputtering
• Sputter Roll Coater for Polymer Films
 • Process Flexibility
 • Concepts of Compartment Units
• Summary
Coating Technology- Process in **DC** Mode

Dual **DC** Magnetron

DC, DC-DC

Conductive targets ($\rho \leq 1 \, \Omega \text{cm}$), layers with (residual) conductivity long-term stable TCO processes (e.g. ITO or ZnO:Al$_2$O$_3$)
ITO Ceramic Targets with **DC** Sputtering

Planar with Re-deposition
Nodules, Powder → Maintenance

<table>
<thead>
<tr>
<th>Rotatable w/o Re-deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>no Nodules, less Maintenance</td>
</tr>
</tbody>
</table>

- ITO ceramic planar target
- Target thickness 10 mm
- Target utilization 25%
- DC power density < 5 kW/m
- \(ddr = 34 \text{ nm} \times \text{m/min per SSM} \)
- Cleaning of target periodically,
- **nodule formation may occur**

- ITO Ceramic rotatable target
- Target thickness 6 mm
- Target utilization 80%
- DC power density > 10 kW/m
- \(ddr \) up to 100 nm\(\times \)m/min
- Robust process, clean target,
- **no nodules**
Main requirements

- Sheet resistance $R_{sq} \leq 150$ Ohm for standard panel sizes
 - Trend to $R_{sq} < 100$ Ohm for larger (>10”) panels
- Thickness 20...25 nm for invisibility (index matching)
 - Higher thickness = cost + more efforts for index matching
- Low absorption

Can these requirements be reached by rotatable magnetron technology at high rates for ITO?
Sheet resistance depends on the substrate
- Wafer: 130 Ohm
- PET with HC: 147 Ohm
- Glass with SiO₂: 179 Ohm
- Deposition rate: 37 nm m/min

ITO thicknesses: around 23 nm

60 min annealed at 150°C
ITO-Sputtering from Rotatable Targets
PET - Substrate Variation

- PET is not PET (who’d ever believed)
 - pretreatment, seed layers may help or not…

~30nm ITO on PET, annealed at 150°C

specific resistivity (μOhmcm)

Oct. 2013
VON ARDENNE - AIMCAL Web Coating & Handling Conference 2013 - Charleston
ITO-Sputtering from Rotatable Targets
High Rate Sputtering

• ITO on standard PET/HC
 ▶ High rate: lower resistivity (annealed), wider process window

![Power variation (PET)](image_url)
Before annealing
- Between 15 and 35° significant intensity → nanocrystalline structures

After annealing
- Polycrystalline structure with preferred (222) orientation
ITO-Sputtering with Rotatable Targets
Carrier Density and Mobility

- **Annealing**: carrier density increases from 4 to $7 \times 10^{20}\text{cm}^3 (+42\%)$
 - At 2.5% O$_2$ (optimum): only a minor change in the mobility by annealing
- **O$_2$-Flow**: Only a small increase of the carrier density by increasing of the oxygen flow
 - But a strong increase of the mobility with increasing oxygen content
Outlook: Low Ohm ITO on Dry IM Coating for Touch Panel Application

- **Finding:** \(R_{sq} 117 \, \Omega @ 25 \, \text{nm}, \text{ann.} 150^\circ \text{C}, 90 \, \text{min} \to 290 \, \mu\Omega \text{cm} \\
 \Rightarrow \text{Task: Optimize IM layers and ITO process for best ITO}

Goal:
\(R_{sq} < 100 \, \text{Ohm} \)
\(b^* \approx 0.8, \, T \approx 89.5\% \)
\(\Delta E^*(\text{etch}) = 0.9 \)
Rotatable Magnetron Sputtering in R2R Web Coating of Optical Layer Stacks

Outline

• Rotatable Magnetron Sputtering
• AC Sputtering of dielectric films
 • SiO$_2$ Sputtering (Impedance Control)
 • TiO$_2$, Nb2O$_5$ Sputtering (Ceramic)
• DC Sputtering
 • Aspects of ITO Sputtering
• Sputter Roll Coater for Polymer Films
 • Process Flexibility
 • Concepts of Compartment Units
• Summary
Sputter Web Coater
FOSA 1300D10

- Two drum system
- Planar magnetron technology
- Box-in-box principle
New FOSA1600 Web Coating System

- Modular design, multi-chamber platform for R2R vacuum coatings
- Deposition of high-quality layers using advanced sputtering technology
- Flexible substrates, polymer films with multiple coil handling
- Based on proven FOSA1300 concept
Systems and Features
FOSA1600 D8 Dual Drum Web Coater
Modularity of Multi-Chamber System

- 1x unwinding, 1x rewinding, 1 to 3x process chambers
- 1 drum (heated/chilled) per process chamber
- Concept allows up to 24 DC-magnetrons

System

FOSA1600S4
FOSA1600D8
FOSA1600 T12
FOSA1600 Web Coating System
Inner Concept

Compartment Unit

• Box-in-box principle
• Undisturbed process vacuum
FOSA1600 Web Coating System
Inner Concept

Compartment Unit
- Box-in-box principle
- Undisturbed process vacuum
FOSA1600 Web Coating System

QC, Metrology

In-Situ Measurement

- Multi-track optical measurement (transmit., reflectance)
- Non contact sheet resistance measurement
- Optical emission spectroscopy
- Marker device

Process Control

- Impedance / lambda control for SiO_xN_y etc. (VAprocos®)
FOSA1600 Web Coating System
QC, Metrology

- QC: position related data are preferred
 - Movement controlled real time triggering of data acquisition depending on measurement position
 - Subsequent, independent data evaluation
Rotatable Magnetron Sputtering in R2R Web Coating of Optical Layer Stacks

Outline

• Rotatable Magnetron Sputtering
• AC Sputtering of Dielectric Films
 • SiO₂ Sputtering (Impedance Control)
 • TiO₂, Nb₂O₅ Sputtering (Ceramic)
• DC Sputtering
 • Aspects of ITO Sputtering
• Sputter Roll Coater for Polymer Films
 • Process Flexibility
 • Concepts of Compartment Units
• Summary
Rotatable Magnetron Sputtering in R2R Web

Summary

- Rotatable Magnetrons are superior in use for mass production: higher dep. rates, reduced flaking, longer campaign duration
- Flexibility of Rotatable Magnetrons is obvious for R2R web coatings with ITO and dielectrics SiO$_2$, Nb$_2$O$_5$, TiO$_2$
- Uniformities of $\Delta d/d \leq \pm 2\%$ in TD and MD are achievable

- **Goal:** ITO touch panel films with $\rho < 250$ $\mu\Omega$cm and $T > 90\%$
 - Machine concepts shall assure and reliable process conditions combined with flexibility
Thank you | Danke für Ihre Aufmerksamkeit
Auf Wiedersehen | See You in Dresden 2014!

www.vonardenne.biz
Cordial Invitation

10th International Conference on Coatings on Glass and Plastics
June 22 – 26, 2014, Dresden, Germany