Applied Research for Vacuum Web Coating: What is Coming Next?

Matthias Fahland, John Fahlteich, Steffen Günther, Manuela Junghähnel, Claus Luber, Nicolas Schiller, Cindy Steiner, Steffen Straach, Michiel Top

AIMCAL R2R Conference USA 2017
Naples, Florida, October 15 - 18, 2017
presenter’s perspective
R&D services for the industry and flexible products
Service along the R&D chain for flexible products

- testing substrate materials
- coating technologies
- key components
- application
- technology transfer
- pilot production
Hot R&D topics

- ultra-thin flexible glass
- high-rate PECVD
- advanced packaging films
- encapsulation of flexible electronics
- flexible materials for batteries
- functional films for buildings and outdoor use
Ultra-thin flexible glass

<table>
<thead>
<tr>
<th>product, application</th>
<th>ultra-thin flexible glass for displays, wearables, sensors, batteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>state of the art</td>
<td>increasing availability of flexible glass</td>
</tr>
<tr>
<td>R&D need</td>
<td>surface functions</td>
</tr>
<tr>
<td>approach, solution</td>
<td>roll-to-roll and sheet-to-sheet vacuum coating technologies</td>
</tr>
</tbody>
</table>

latest R&D results at FEP

- installation of a vacuum pilot roll coater (ARDENNE GmbH)
- roll-to-roll coating technology development: magnetron sputtering (e.g. ITO)
- Flash lamp annealing (FLA)
Pilot roll-to-roll coater FOSA labX 330 glass

- Flexible glass, polymer film, metal foil
- up to 330 mm deposition width
- Substrate temperature up to 350 °C
- up to 4 coating zones
- Dual Anode Sputtering
- Front-side touchless

Interleaf winding system
Rewinder
Unwinder
ei./opt Inline-Monitoring
Heater
Rotatable Magnetron
Ultra-thin flexible glass
Project KONFEKT: R2R Coating on Flexible Glass

Objective
- Development of adapted coating equipment
- Application development
- Establishing cooperation with glass makers and lamination facilities

Technology
- Sputtering & heating
- Sputtering and lamination processes

project funded by BMBF, contract Nr. 13N13818
High rate PECVD process

<table>
<thead>
<tr>
<th>product, application</th>
<th>protective or adhesion promoting layers for various applications</th>
</tr>
</thead>
</table>
| R&D need | • increase of productivity
| | • technology tailoring for specific applications |
| approach, solution | arcPECVD: high-rate PECVD process |
| latest R&D results at FEP | • protective layer on barrier film
| | • adhesion promoting layer
| | • anti-fingerprint
| | • color coatings |
High rate PECVD: arcPECVD

- Low pressure PECVD (0.1 – 5 Pa)
- Very high coating rates (> 2000 nm m/min)
- Plasma sources for web widths > 2.85 m
Protective coating on a barrier layer by arcPECVD

- Roll-to-roll in-line deposition of both barrier layer and protective layer: in-line combination of sputtering and arcPECVD
- Protective layer provides significant protection of barrier layer
Advanced packaging films

<table>
<thead>
<tr>
<th>product, application</th>
<th>Transparent barrier films for packaging</th>
</tr>
</thead>
</table>
| state of the art | • increasing need for transparent barrier films
| | • AlOx technology available |
| R&D need | • advanced product quality (barrier, convertability)
| | • wide range of polymer films (including biopolymers)
| | • retortable packaging |
| approach, solution | HAD-AlOx technology: Plasma-supported reactive evaporation of Al from boats |
| latest results at FEP| • several industrial installations together with Applied Materials WEB Coating GmbH
| | • advanced barrier performance on a wide range of polymer films |
HAD-AlOx technology
(HAD: Hollow cathode Activated Deposition)

Plasma assisted AlO\textsubscript{x} evaporation

- High density oxygen plasma expands into evaporated Al plume
- Molecular oxygen strongly dissociated & incorporated at growth surface
- High degree of control of *energetic* particle flux to growth surface significantly expanding process window
Barrier performance: comparison with conventional AlOx technology

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Uncoated WVTR</th>
<th>Standard AlO$_x$ WVTR</th>
<th>Plasma Assisted AlO$_x$ WVTR</th>
<th>Uncoated OTR</th>
<th>Standard AlO$_x$ OTR</th>
<th>Plasma Assisted AlO$_x$ OTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET (12 µm)</td>
<td>40-50</td>
<td>≤ 0.7</td>
<td>≤ 0.35</td>
<td>100-140</td>
<td>≤ 1.6</td>
<td>≤ 0.8</td>
</tr>
<tr>
<td>BOPP (17 µm)</td>
<td>4-7</td>
<td>≤ 7</td>
<td>≤ 0.30</td>
<td>2000-2500</td>
<td>≤ 50</td>
<td>≤ 35</td>
</tr>
</tbody>
</table>

WVTR: Water Vapor transmission rate, measured in g(m2 d) at 38°C, 90 % r. h.
OTR: Oxygen transmission rate, measured in cm3/(m2 bar day) at 23°C, 0 % r. h.

- Optical transmission ≥ 98%
 (measured inline during coating process)
- Web speed 8 m/s

Source: Neil Morrison, Applied Materials WEB Coating GmbH
Presentation at AMI Coral Springs, Florida, USA, 2017
Barrier performance for “non-conventional” substrates

<table>
<thead>
<tr>
<th>Polymer film type</th>
<th>OTR [cm³/m² × d × bar] (23°C, 0 % r. h.)</th>
<th>WVTR [g/m² × d] (38°C, 90 % r. h.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLA 20 µm</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>CPP 20 µm</td>
<td>50</td>
<td>0.5</td>
</tr>
<tr>
<td>PE 20 µm</td>
<td>40</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Optical transmission ≥ 98%

Web speed 8 m/s

Barrier values may vary depending on substrate and process conditions.
High barrier films for encapsulation of flexible electronics

<table>
<thead>
<tr>
<th>product, application</th>
<th>transparent high barrier films for encapsulation of flexible electronics</th>
</tr>
</thead>
</table>
| state of the art | • increasing number of flexible electronic products (like flexible organic solar cells)
 • increasing need for encapsulation |
| R&D need | • barrier, optical performance, low defects rate
 • reduction of cost
 • production equipment |
| approach, solution | • systematic investigation of sputtering process
 • development of substrate smoothing layer based on electron beam curable coatings |
| latest R&D results at FEP | • reduction of defect rate in sputtering processes
 • optimized winding procedure
 • optimization of layer composition |
Project OPTIPERM: Encapsulation films for flexible electronics

<table>
<thead>
<tr>
<th>Objective</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simplified barrier layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Robust technology concept</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wet coating and electron</td>
<td></td>
</tr>
<tr>
<td></td>
<td>beam curing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sputtering</td>
<td></td>
</tr>
</tbody>
</table>

Wet coating
Sputtering

Planarizer
Barrier
PET-Substrate

WVTR [g m\(^{-2}\) day\(^{-1}\)]

- **SiO\(_2\)**
- **Si\(_3\)N\(_4\)**

Substrate: PC without planarizer

= measurement limit Brugger

Project partners

- VON ARDENNE
- 3D Micromac
- GfE Fremat
- IOT
- Vision optics

Funding contract Nr. 100236574/3160
Flexible materials for batteries

<table>
<thead>
<tr>
<th>Product, Application</th>
<th>Future batteries with improved energy density</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D Need</td>
<td>Cost efficient technologies for thin functional layers</td>
</tr>
<tr>
<td>Approach, Solution</td>
<td>Vacuum roll-to-roll technologies</td>
</tr>
</tbody>
</table>
| Latest R&D Results at FEP | • Si anode layers on copper foils for Lithium-Sulfur batteries
| | • Protective layers on current collectors for Lithium Metal Polymer batteries
| | • Plasma supported coating technologies for solid state electrolytes |
Vacuum deposited thin films: potentials and R&D needs

- Anode: Si, Li
- Cathode: e.g. LiCoO$_2$
- Interfacial layer on current collector
- Solid electrolyte
- Thin film coated separator
- Collector
- Graphite layer
- Metal oxide layer
- Charging and discharging
Silicon anodes for Li-S-Batteries

Copper foil with silicon anode layers – SEM picture of an ion beam prepared cross-section

Capacity vs. charge cycles after additional structuring of Si anode layers and testing in test cells
Roll-to-roll process for high-rate deposition of solid electrolyte layers on metal foils

Schematic layout of an arrangement for depositing a LiPON solid electrolyte layer

Coating drum

Coated metal foil

Plasma system

Flange unit including 4 inductive evaporators
4 reactive gas inlets
High-rate deposition of solid electrolyte: Influence of the plasma activation

Without plasma activation
No nitrogen integration

With plasma activation
high nitrogen integration
Functional films for architecture and outdoor use

| product, application | functional films for outdoor use like
| | • flexible solar cells
	• integration in membrane roofs and façades
R&D need	vacuum PVD and PECVD on outdoor-stable substrates
approach, solution	optimization of vacuum coating processes to special properties of fluoropolymer substrates
latest R&D results at FEP	• sputtered permeation barriers on ETFE with same performance as on PET
	• outdoor-stable anti-reflective surface treatment
Permeation Barrier Performance on Fluoropolymers

reactive dual magnetron sputtering zinc-tin-oxide (ZTO)

WVTR at 38 °C / 90 % r.h. [g/(m²d)]

- ZTO on PVDF PVDF-1008, 50 µm
- ZTO on PET Melinex 400, 75 µm
- ZTO on ETFE 6235-Z, 100 µm

ZTO layer thickness [nm]
Reactive Plasma Etching of ETFE surfaces to promote adhesion thin layers

- top-coat deposition
- thin SiO₂ layer (< 10 nm)
- seed layer deposition
- thin SiO₂ (< 10 nm)
- oxygen plasma etching
- process drum
Summary

R&D for vacuum web coating

- ultra-thin flexible glass
- advanced packaging films
- encapsulation of flexible electronics
- flexible materials for batteries
- functional films for buildings and outdoor use
- high-rate PECVD

I thank you for your attention