Improved Adhesion EVA for Extrusion Coating / Extrusion Laminating

Presented by:
Scott Weber
AD&TS Engineer
Celanese
Overview

- Objective
- Market / Applications
- Experimental Procedures
- Results
- Conclusions
Objective: Improve adhesion of EVA to substrates in extrusion coating / lamination processes

Potential Cost/Efficiency Benefits

- Increased adhesion to substrates
- Increased line speeds
- Reduced air-gaps for improved neck-in
- Reduced melt temperatures
Markets / Applications

- Flexible Packaging
 - Lidding stock
 - Cheese packaging
- Thermal Lamination
 - Document protection
 - Gift cards
Celanese Ateva® ExtruBond™
EVA Extrusion Coating Grades

Property Ranges
• VA 16-28%
• MI 6-30

Additives
• Antioxidant
• Slip
• Antiblock
• Chill Roll Release
• UV Stabilizer

- 1615 16% VA, 15 MI
- 1641 16% VA, 28 MI
- 1941 19% VA, 30 MI
- 1943MS 19% VA, 30 MI
- 1943SB 19% VA, 30 MI
- 2020 20% VA, 20 MI
- 2861A 28% VA, 6 MI
- 2821A 28% VA, 25 MI
Experimental Approach

- Performed lab studies to evaluate if the new technology will increase adhesion to PET substrates
- Produced simulated extrusion coated samples for adhesion testing
- Measure adhesion force of samples
Simulated Extrusion Coating Samples

• Produced simulated Extrusion coated samples for adhesion testing

 • EVA 1 - 16% VA 8.5 MI (Standard)
 • EVA 2 - 16% VA 8.5 MI (New Technology)
 • 92ga PET (Hand sheets)

• Tested untreated and corona treated PET

• Measure adhesion force of samples

• If successful, complete extrusion coating trials on production line
Experimental Approach

- Adhesion test samples were prepared using a laboratory cast film line
 - Coating Thickness – 25microns (1mil)
 - Line Speed 1.5 m/min (5 fpm)
Experimental Approach

- PET Slip sheets were fed by hand onto the rubber roll to create a coated sample.
- Coated untreated and corona treated PET
- One inch wide strips were cut from the coated samples for adhesion testing
Lab Trials Adhesion Results

- Untreated PET Film (Gen 1)
 - EVA 1 = 6 g/cm (15 g/in)
 - EVA 2 = 7.5 g/cm (19 g/in)
 - ~ 25% Adhesion Improvement
Lab Trials Adhesion Results

- Corona Treated PET Film (Gen 1)
 - EVA 1 = 23.5 g/cm (60 g/in)
 - EVA 2 = 31.5 g/cm (80 g/in)
 - ~ 30% Adhesion Improvement
Lab Trials Adhesion Results

- Modified the Technology (Gen 2)
- Corona Treated PET Film

- EVA 1 = 23.5 g/cm (60 g/in)
- EVA 2 = 146 g/cm (370 g/in)

- ~515% Adhesion Improvement
Extrusion Coating Trials

- Next steps for scale up production EC trials
 - Purchased line time for commercial Extrusion Coating Trials
 - Define Trial Conditions
Extrusion Coating Trials

- Extrusion Coating Trial Conditions
 - 1 Mil Coating - Melt Temperature 227°C (440°F)
 - Line Speeds 107m/min & 214m/min (350 fpm / 700 fpm)
 - 12 micron (48ga) PET
 - Substrate pre-treatments
 - No Treatment
 - Corona
 - Corona / Primer / Ozone
 - 178mm (7in) Air-gap
<table>
<thead>
<tr>
<th>Force g/cm (g/in)</th>
<th>EVA 1</th>
<th>EVA 2</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated film</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107 mpm (350 fpm)</td>
<td>8 (20)</td>
<td>12 (30)</td>
<td>50%</td>
</tr>
<tr>
<td>214 mpm (700 fpm)</td>
<td>8 (20)</td>
<td>16 (40)</td>
<td>100%</td>
</tr>
<tr>
<td>Corona treated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107 mpm (350 fpm)</td>
<td>16 (40)</td>
<td>55 (140)</td>
<td>250%</td>
</tr>
<tr>
<td>214 mpm (700 fpm)</td>
<td>24 (60)</td>
<td>63 (160)</td>
<td>167%</td>
</tr>
<tr>
<td>Corona/primer/O3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107 mpm (350 fpm)</td>
<td>110 (280)</td>
<td>173 (440)</td>
<td>57%</td>
</tr>
<tr>
<td>214 mpm (700 fpm)</td>
<td>106 (270)</td>
<td>173 (440)</td>
<td>63%</td>
</tr>
</tbody>
</table>
Heat Seal Performance

![Graph showing the heat seal performance of EVA 1 and EVA 2.](image)

- EVA 1
- EVA 2
Hot-Tack Performance

![Graph showing Hot-Tack Performance with two curves: EVA 1 and EVA 2. The graph plots Force (g/cm) against Temperature (Deg C).]
Conclusions

• Demonstrated the following:
 • Improved adhesion of standard EVA grades
 • Increased line speeds while maintaining adhesion levels
 • Improved adhesion at high extrusion coating line speeds
 • No effects to processing conditions
 • No effects to sealing characteristics
Extrusion-coated polyester films were thermally laminated to several substrates to test for adhesion with a t-peel test.

Lamination to Paper

- Standard EVA = 60 g/in
- ExtruBond™ = 100 g/in

Lamination to corona-treated PET

- Standard EVA = 45 g/in
- ExtruBond™ = 110 g/in

Lamination to untreated PET

- Standard EVA = 25 g/in
- ExtruBond™ = 25 g/in

Samples laminated at nominal temperature of 90°C.
Going Beyond EVA??

- LDPE Improved Adhesion Technology
 - Produced simulated Extrusion coated samples for adhesion testing
 - LDPE 1 - 12.7mi .917 Density (Standard)
 - LDPE 2 - 12.7mi .917 Density (New Technology)
 - PET (Hand sheets)
 - Tested untreated and corona treated PET
 - Measure adhesion force of samples
Experimental Approach

- Coating Thickness - 1mil
- Melt Temp = 230°C (445°F)
- Line Speed 1.5 m/min (5 fpm)
- PET slip sheets to create a coated sample
- Coated untreated and corona treated PET
- One inch wide strips were cut from the coated samples for adhesion testing
Lab tests have demonstrated LDPE adhesion improvements with similar gains to the EVA results:

- ~2x increase on untreated film
- ~10x increase on corona treated film

<table>
<thead>
<tr>
<th>Substrate</th>
<th>LDPE 1</th>
<th>LDPE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated PET Film</td>
<td>4 g/cm (11 g/in)</td>
<td>8 g/cm (20 g/in)</td>
</tr>
<tr>
<td>Corona Treated PET Film</td>
<td>6 g/cm (15 g/in)</td>
<td>51 g/cm (130 g/in)</td>
</tr>
</tbody>
</table>
Next Steps

• Evaluate the Improved Adhesion EVA on other flexible substrates
 • Nylon, OPP, BOPP, Metalized

• Conduct Extrusion Coating Trials to evaluate the LDPE adhesion improvement
Special Thanks

- Stephanie Barden
- Jerry Ferrara
- Andy Reuter
- Becky Van Damme
- Betsy Kelly
- Dirk Hair
- Myra Sumague
Questions?

Scott Weber
Celanese
+1 859 372 3156
robert.weber@celanese.com
Disclaimer

© 2016 Celanese or its affiliates. All rights reserved.

This publication was printed based on Celanese’s present state of knowledge, and Celanese undertakes no obligation to update it. Because conditions of product use are outside Celanese’s control, Celanese makes no warranties, express or implied, and assumes no liability in connection with any use of this information. Nothing herein is intended as a license to operate under or a recommendation to infringe any patents.

Celanese®, registered C-ball design and all other trademarks herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.

Contact Information

All Regions
222 W. Las Colinas Blvd, Suite 900N
Irving, TX 75039
Technology and Product Stewardship
$: +1-859-525-4740
Customer Service
$: +1-800-661-3663 $: +1-859-372-3214
e: eva.techservice@celanese.com