The discharge voltage behaviour during reactive sputtering of oxides

R. De Gryse, D. Depla, J. Haemers
Hysteresis behaviour Ti/O$_2$ and Al/O$_2$

Discharge voltage INCREASES on addition of oxygen

Discharge voltage DECREASES on addition of oxygen

Measurements by S. Heirwegh
$V_{\text{discharge}} = \frac{W_0}{\varepsilon_0 \varepsilon_i E \gamma_{\text{ISEE}}}$

W_0: effective ionisation energy

ε_i: ion collection efficiency (for magnetron: almost 1)

ε_0: fraction of maximum possible number of ions (for magnetron: almost 1)

m: multiplication factor: accounts for ionisation in the sheath

E: effective ionisation probability: influenced by electron recapture

γ_{ISEE}: ion induced secondary electron emission coefficient

* G. Buyle, “Simplified model for the DC planar magnetron discharge (PhD, UGENT, 2005)
Relationship ISEE/Voltage

- **Inverse of the discharge voltage (x10^-3 1/V)**
 - **ISEE coefficient**

- **Elements**:
 - Ag
 - Al
 - Au
 - Ce
 - Cr
 - Cu
 - Mg
 - Nb
 - Pt
 - Re
 - Ta
 - Ti
 - Y
 - Zr
Measuring scheme

- **Voltage**:
 - V_{O_2}
 - V_{oxAr}
 - V_{Ar}

- **Status**
 - Argon
 - Oxygen
 - Magnetron

- **Time**
 - Δt

- **Discharge voltage**
 - Oxygen addition (red)
 - Oxygen removal (blue)

- **Oxygen flow**
 - Ti

- **Graph**
 - Discharge voltage vs. oxygen flow

AIMCAL.org
Results for different metals
ISEE: two groups

High ISEE coefficient

Low ISEE coefficient

See Phelps et al. (Plasma Sources Science and Technology 1999)
At constant current: \[V_{\text{discharge}} = \frac{W_0}{e_0 i n F_{\text{SE}} E} \]

Energy loss per produced ion – electron pair

M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing (New York, Wiley)
Calculation of yield

\[
\frac{I}{n_0} = \frac{Y}{\Delta}
\]

\[d = R_p + R_f\] (1)

SRIM (2)
- ion: \(O^+\)
- energy: \(eV_{O2}/2\)
- material: oxide (density, stoichiometry)

(2) SRIM can be downloaded from http://www.srim.org
SRIM sputter yields: calculated based on the surface binding energy following the model of Malherbe et al. (Appl. Surf. Sci. 27 (1986): 355-365)
Hypothesis: Sputter bombardment results in reduction of the oxide which will influence the ISEE coefficient.

Reduction

\[R = \frac{(M/O)^s}{(M/O)^b} \]
Hypothesis (2)

ISEE coefficient vs O/M ratio

- ISEE coefficient values: 0.11, 0.10, 0.09, 0.08
- O/M ratio values: 1.6, 1.4, 1.2, 1.0, 0.8, 0.6

The graph shows a negative correlation between ISEE coefficient and O/M ratio.
At constant current, during reactive sputtering:

1) Increase or decrease of the discharge voltage can be attributed to a change of the ISEE coefficient due to target oxidation.

2) Strong ion bombardment reduction results in a low ISEE coefficient.

3) A linear relationship between the O/M and the ISEE coefficient has been shown.
Acknowledgements

The authors are indebted to the BEKAERT company for financial support