Slot Die Patch Coating

Lee Fennema • LAF@CCRes.com • 262-246-7200
Introduction

• What we will cover:
 – Introduction
 • Definition
 • Focus
 • Usefulness
 – Application Examples
 – System Description
 • Types
 • Specifications
 • Special Considerations
 • Critical Integration Issues
 – An Example
Introduction: Definition

- What is slot die patch coating?
 - “Using a slot die to coat one or more rectangular areas on a substrate”
 - Examples:
Introduction: Focus

• Coating
 – Excluding remainder of process: e.g., unwinding, treating, drying/curing, rewinding

• Slot die
 – Excluding other coating methods: e.g., roll coating
Introduction: Focus

Why slot die lends itself to patch coating
 - Relatively precise coating start and stop
 - Easy to vary coating width via change of shim
 • In some cases, may need cavity plugs
Introduction: Focus

• Why slot die lends itself to patch coating
 – Multiple coating lanes can be established
Introduction: Focus

• Why slot die lends itself to patch coating
 – Excellent coating thickness uniformity
 • Cross-web and machine directions
 – Up to three coating layers can be applied simultaneously
Introduction: Usefulness

• When is patch coating of interest?
 – Working with sheets of substrate
 • Original form of substrate is rectangular
 • Other process steps require sheet form
 • To facilitate product development work
 – End product construction requires patches
 • E.g., medical patches
Application Examples

• Medical
 – Transdermal patches
 • Caution required!

![Diagram of a patch with layers: Backing, Drug, Rate-controlling membrane, Liner, Adhesive]
Application Examples

• Electronic Displays
 – Wide variety, much development work
 – Rigid or flexible substrate
 – Coating fluids may be expensive
 – End product often rectangular

• Ceramics
 – Sometimes convenient to coat in patches

• Smart Glass
 – Rectangular format
 – Typically expensive coatings
Application Examples

- **Batteries & Fuel Cells**
 - Multi-layer construction, usually on metal foil
 - Stacking of discrete rectangular laminates
 - Uniform coating for proper functionality
System Description

• Types
 – Form of the substrate: web vs. sheet
 – Which is in motion: die or substrate
 – Number of lanes to be coated

• General specifications
 – Mostly similar to other coating systems
 • E.g., web or sheet size, substrate characteristics, special environments (clean room, explosion proof), coating fluid rheology
 – Dimensions and locations of coated patches
 – Coating speed, need for vacuum box
System Description

• Special Considerations
 – Motion
 • Web handling vs. linear motion control for sheet or die
 • 2-axis positioning or robotic arm for more complex patch placements

Patch coater with moving die, stationary sheet, and integrated fluid delivery system (in cabinet)
System Description

• Special Considerations
 – Slot die
 • Cavity to suit fluid rheology
 • What will happen at patch edges?
 • How many layers? Are lower layers to be sealed in by upper layers?

Dual slot die

Lower layer coating sealed in by upper layer
System Description

• Special Considerations
 – Cleaning
 • Usually: avoid need with quick start and stop if possible
 • Otherwise:
 – Rest die lips in damp media between patches
 – Wipe die between patches (manually, or mechanically)
 – Air purge
 • If needed, helpful to be able to swing die so lips are at 12 o’clock
 – Controls
 • Timing & coordination, esp. motion control and fluid delivery
 • Detailed specification helpful
System Description

- Special Considerations
 - Fluid delivery system
 - Pump selection depends on fluid rheology
 - Small systems: syringe pump with suck back feature may be practical
 - Larger systems: gear or progressing cavity pump
System Description

• Special Considerations
 – Fluid delivery system
 • Quick fluid flow starts and stops required
 – Fast-acting valve(s) at die entrance
 – Change flow quickly from die to recirculation
System Description

• Critical Integration Issues
 – Coating gap
 • Gap from die lips to substrate
 • Precision required in:
 – Die construction
 – Die positioning (.0001” increments)
 – Substrate backing roll or surface
 – Alignment of all elements
System Description

• Critical Integration Issues
 – Coating Start / Stop
 • Within what distance must coating go from 0 to specified coating thickness? Back to 0?
 – Valve(s) at die entrance may need to work very quickly
 • Must integrate with die or substrate motion
 • **Timing** is the key, and controls are usually the place
An Example

- **System type**
 - Coats a single patch on each moving sheet that passes under a slot die
An Example

- Selected general specifications
 - Maximum sheet size 1300mm x 1200mm
 - Variable length, constant width for any given run
 - 100% solids
 - Coating uniformity within +/- 2.5% of target thickness
 - Line speed range 2 to 20 mpm (no vacuum box required)
 - Convertible to web coating
An Example

• Motion
 – Sheet is placed on infeed belt, pushed across slide plate, and pulled out by outfeed belt
An Example

- **Slot Die**
 - Standard single slot die
 - Shims establish slot gap and width
An Example

- **Cleaning**
 - Not required between patches
 - Required between runs
 - 90 degree swivel to horizontal facilitates cleaning

![Image showing die positions](image-url)
An Example

- **Fluid Delivery System**
 - Gear pump, cartridge-style filters
 - Minimizing opportunities for air to enter system
 - Equivalent of three-way valve at die feedport
An Example

- Controls
 - Drive system for vacuum belts, pump, blower
 - Color touch screen for operator interface
 - Phone modem for remote service access
 - Photosensor picks up leading and trailing edges of sheet
An Example

• Critical integration issues
 – Coating gap
 • Precision positioner
 • Precision vacuum slide bar
 • Aligned to .001”
 • Adjuster increments of .0001”
An Example

• Critical integration issues
 – Coating start
 • Leading edge of sheet sensed as it arrives near coating head
 • System calculates when to start coating based on belt speed
 • Turns valve to stop recirculation and start coating flow to die
 – Coating stop
 • Trailing edge of sheet sensed as it arrives near coating head
 • System calculates when to stop coating
 • Turns valve to stop coating flow to die and start recirculation
 – At 20 mpm sheet motion, coating thickness reaches 50 microns (start) or 0 (stop) within 6 mm travel
Conclusion

- Slot die works well in patch coating
- Patch coater configurations vary widely
 - Technology evolving
- Critical issues:
 - Establishing precise coating gap
 - Integrating motion w/ fluid delivery for coating start/stop
CLICK TO RETURN TO LIST OF PAPERS AND PRESENTATIONS