VITRIfLEX

Transparent Ultra-Barrier Film Production and Product Integration

Mark George, Martin Rosenblum, Jason Bloking, Rex Chang

AIMCAL R2R Conference
Flexible, Transparent Barrier Films: Applications

Roll-to-Roll Printed, Flexible Opto-Electronics

Flexible OLED Display

Flexible OLED Lighting

Quantum Dot LCD

Lightweight Thin Film Solar

Audi AG

Samsung Galaxy S7 Edge

AIMCAL 2018
Vitriflex’s Production Deposition System - AEGIS

Web Handling Designed for Barrier Film

Modular Winding Zone Construction

Plasma Pretreat

Six Independent Modular Deposition Zones

Proprietary Sputtering Process Controls

Web widths up to 1400 mm

AIMCAL 2018
Demonstrated Ultra-Barrier Film Production

5 meters

Printed Electronics USA 2015 Best Technical Development Manufacturing Award

AIMCAL 2018
3 Layer WVTR Performance

Patented Multi-layer Thin Film Structure

- Diffusive Layer
- Reactive Layer
- Diffusive Layer

Amorphous
PolyCrystalline
Amorphous

Thicknesses optimized for maximum transmittance

MOCON AQ2 < 5E-04 grms/m²/day

AIMCAL 2018
Production Campaign

- 125 um PET
- 1100 m Rolls
- 1330 mm width
- High Deposition Rate
- Power > 97% of Rated
 - Power Supply Failures
 - Output Cable Failures
- 12 hour Pump to Pump
Transmission 3-Layer Barrier

Overall Average T = 88.7%
Standard Deviation = ± 0.6%

Specification T > 88%

Specular Transmittance 400 nm - 800 nm

As-Deposited (Not Laminated)

Roll Number

A Layer
C Layer
Planarization Layer
Primer Layer
PET

Wavelength (nm)

Total Transmittance (%)
Barrier Film Adhesion

• WVTR Performance vs Plasma Dose
 - Adhesion between Barrier Film & Planarization Layer
 - Optimization of *In Situ* Plasma Treatment Improves WVTR Performance

- Plasma Process
 - SCI envis-ION DMPTS™
 - Remote Plasma Source
 - 40 kHz Excitation
 - 50% Ar/O₂
 - 5 milliTorr

- Sputtered Barrier Film
- Planarization Layer
- Substrate

- Passes X-Hatch Adhesion After 1000 hrs @ 85°C/85%RH

AIMCAL 2018
Barrier Film Just Another Layer in the Stack?

PV Example
- **Multiple Layers Laminated Together**
 - Adhesion between Barrier Film/Weathering Layer
 - Adhesion between Barrier Film/Solar Module
 - TPO – Thermal plastic polyolefin
 - POE – Polyolefin Elastomer
 - EVA – Ethyl Vinyl Acetate

Display Example
- **Multiple Layers Laminated Together**
 - Optical coupling between Barrier Film/Anti Glare Hard Coat
 - Optical coupling between Barrier Film/Display Device
 - OCA – Optical Clear Adhesive
Achieving Product Integration Success

PV Applications
- Total Light Transmission High > 90%
- UV Stability
- Adhesion to EVA, TPO, POE

Display Devices
- L*, b*, a*
- Optical coupling to OCA

Primary Importance

Stability

Color
Lamination Adhesion Example

- **Barrier Film Architecture**

- **EVA – Organic Primer Adhesion Trial**
 - 2 primers (PE & U)
 - Different EVA Additives and Cure Conditions
 - Pass 0 – 6 week Damp Heat Test > 30 N/cm

- **Test Structures**

 Primer - ~ 100 nm applied in-line on extrusion line

AIMCAL 2018
Adhesion Example

EVA Cure Condition B; Supplier 2, U-Primer
- Initial adhesion is excellent
- Interfacial adhesion decreases with exposure duration

EVA Cure Condition B; Supplier 4, U-Primer
- Initial adhesion is excellent
- Cohesive Failure of PET as exposure increases
- Interfacial Adhesion Retained

CONDITIONS
- 85°C
- 85%RH

PET Fracture

Supplier 4 U-Primer Acceptable
Change to Hydrolytically Stable PET
Results for EVA Adhesion

<table>
<thead>
<tr>
<th>Supplier</th>
<th>PET Backside Primer</th>
<th>EVA Cure A</th>
<th>EVA Cure B</th>
<th>EVA Cure C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>U</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Corona</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>U</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>MPU</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>Corona</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Implications for Supply Chain

- Limits Manufacturers
- PET not “off-the-shelf” or inventoried
- Order MOQ’s range 5 to 20 Metric Tons
- 6 to 12 week lead time for Extrusion Events
- Requires Customer Commitment for Large Orders
- Logistics for Storage of Rolls
- Shelf Life
Barrier Stack Color Control for Display Application

- Optical Displays require excellent color fidelity
 - CIE Lab Color space requirements
 - $b^* < \pm 1.75$
 - $a^* < \pm 1.5$
 - $L > 93$

Layer Thicknesses

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Coat Layer</td>
<td>2 μm</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.65</td>
</tr>
<tr>
<td>Primer Layer</td>
<td>~ 0.7 μm</td>
<td>1.58</td>
</tr>
<tr>
<td>PET</td>
<td>15 μm</td>
<td>1.48</td>
</tr>
<tr>
<td>Planarization Layer</td>
<td>~ 1.7 μm</td>
<td>1.48</td>
</tr>
<tr>
<td>A Layer</td>
<td></td>
<td>1.65</td>
</tr>
<tr>
<td>A Layer</td>
<td></td>
<td>1.55</td>
</tr>
<tr>
<td>C Layer</td>
<td></td>
<td>1.48</td>
</tr>
<tr>
<td>OCA</td>
<td></td>
<td>1.65</td>
</tr>
<tr>
<td>Barrier Film</td>
<td></td>
<td>1.70</td>
</tr>
<tr>
<td>OCA/PSA</td>
<td></td>
<td>1.58</td>
</tr>
<tr>
<td>Display Device</td>
<td></td>
<td>1.58</td>
</tr>
</tbody>
</table>

Individual Layer Thicknesses Optimized for a^*, b^* and L^*

Optical Absorption in Primer
Design and Results

- Two Different 3 Layer Barrier Designs
 - Design is constrained by tolerance of solution coating layer thickness variation
 - OptiLayer™ Stack Design Module used for Optimization

<table>
<thead>
<tr>
<th>Design 1</th>
<th>Design 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{avg}</td>
<td>93.37</td>
</tr>
<tr>
<td>a_{avg}^*</td>
<td>0.13</td>
</tr>
<tr>
<td>b_{avg}^*</td>
<td>1.69</td>
</tr>
<tr>
<td>ΔL</td>
<td>0.19</td>
</tr>
<tr>
<td>Δa^*</td>
<td>0.7</td>
</tr>
<tr>
<td>Δb^*</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Design 2 has higher tolerance to solution coating layer thickness variations.
Calcium Test Independent Evaluation by Customer

- Calcium Reaction Method
 - 1000 total hrs
 - 2 samples

Calcium Test Setup

Barrier Film Size: 28 mm x 64 mm
Ca Spot Size: 10 mm x 10 mm
Ca Thickness: 10 nm
Dry Time: 70 °C, 16 hours
Environment: 40°C @ 90%RH

<table>
<thead>
<tr>
<th>試料名</th>
<th>処理時間</th>
<th>水蒸気透過度[(g/m²/day)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハイバリアフィルム</td>
<td>1001 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 1</td>
<td>8.2×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>n = 2</td>
<td>6.9×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td>7.5×10^{-6}</td>
</tr>
</tbody>
</table>
Achieving Protection for Flexible OLED Lighting

OLED Substrate Barrier

- **OLED constructed on barrier film** (bottom emitting)
 - Barrier surfaces must meet OLED deposition requirements
 - Thermo-mechanical stability for process integration
 - Vitriflex barrier layers are *all inorganic* and thermally stable
 - Design optical stack for maximum light extraction
 - Vitriflex barrier stack is tunable for index matching

Hybrid Barrier

- **Combine substrate barrier with barrier film and PSA**
 - Improve lifetime without significant additional capital
 - Increase redundancy over that of the individual components
 - Meets demanding automotive applications

Barrier PSA
Pressure Sensitive Adhesive
With H₂O and O₂ Getters

tesa Product # 61501
WVTR of 3 Layer Barrier + Barrier PSA

WVTR: $< 5 \times 10^{-5} \text{ g/m}^2\text{-day}$

40°C / 100%RH
WVTR Flex Testing of 3 Layer Barrier + Barrier PSA

Flex conditions: 10,000 cycles, R = 5mm

TC2017-0410-4

DATA POINTS

<table>
<thead>
<tr>
<th>Time</th>
<th>Rate/Event</th>
<th>Time</th>
<th>Rate/Event</th>
<th>Time</th>
<th>Rate/Event</th>
<th>Time</th>
<th>Rate/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>0.000000</td>
<td>1:00</td>
<td>0.000000</td>
<td>3:00</td>
<td>0.000000</td>
<td>6:00</td>
<td>0.000000</td>
</tr>
<tr>
<td>11:12</td>
<td>0.000000</td>
<td>11:12</td>
<td>0.000000</td>
<td>11:12</td>
<td>0.000000</td>
<td>11:12</td>
<td>0.000000</td>
</tr>
<tr>
<td>16:30</td>
<td>0.000000</td>
<td>16:30</td>
<td>0.000000</td>
<td>16:30</td>
<td>0.000000</td>
<td>16:30</td>
<td>0.000000</td>
</tr>
<tr>
<td>1:00</td>
<td>0.000000</td>
<td>3:00</td>
<td>0.000000</td>
<td>6:00</td>
<td>0.000000</td>
<td>9:00</td>
<td>0.000000</td>
</tr>
<tr>
<td>11:12</td>
<td>0.000000</td>
<td>11:12</td>
<td>0.000000</td>
<td>11:12</td>
<td>0.000000</td>
<td>11:12</td>
<td>0.000000</td>
</tr>
<tr>
<td>16:30</td>
<td>0.000000</td>
<td>16:30</td>
<td>0.000000</td>
<td>16:30</td>
<td>0.000000</td>
<td>16:30</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

WVTR: < 5 x 10^{-5} g/m²·day

40°C / 100%RH

AIMCAL 2018
Integration of Barrier Film and Silver Nanowires for PMOLED

• 3 Layer Barrier Stack Incorporates Sinovia© Technologies Silver Nanowires in Top Coat
 – Enables Flexible and Rollable Single Color Display

![Diagram of PMOLED stack](image)

AIMCAL 2018
Thank You

Mark George
mgeorge@vitriflex.com
+1 520 822 6289