Nanolok™ Technology

for high barrier applications

Presentation to AIMCAL October 19, 2005
Outline

• Brief History of InMat
• Target Markets and Applications
• Barrier Coating Performance
• Unique Features of InMat® Technology
• Summary and Conclusions
InMat® NanoLok™ Technology

Aqueous Nanodispersed Suspension

Nanocomposite Barrier

Substrate

Once dry a thin coating provides extremely high barrier

• Reduced Material Costs
• Environmentally Friendly
• Polymer can be chosen to meet the requirements of the market
• Large (2-5 orders of magnitude) improvements in barrier properties over unfilled polymer
InMat History

1996 - Michelin approaches Hoechst to develop coating to displace tire inner liner

1997 – Patents filed on aqueous nanocomposite barrier coating technology – a disruptive technology for the tire and rubber industry

1999 – InMat founded as spin-off from DuPont (after purchase of Herberts from Hoechst)

2001 – First commercialization in Wilson tennis balls.
2002 - DOD awards contract to develop chemical warfare agent gloves

2004 - Technology platform extended to packaging market
Demonstrating potential to revolutionize the entire area of barrier coatings
Target Markets for Nanolok™ Technology

• **Sports Balls**
 – The bounce and feel of natural rubber with the air retention of butyl
 • Commercially used in Wilson’s Double Core™ ball
 • butyl nanocomposite

• **Tires**
 – Improved air retention, lower weight, less rolling resistance and cost vs. butyl
 • Major tire companies testing –
 • butyl nanocomposite

• **Chemical Protection**
 – Improved solvent, oil, and flame resistant protective gloves
 • nitrile rubber and neoprene nanocomposite

• **Packaging**
 – High barrier with see-through clarity which can be applied via roll-coat, dip, or spray coat processing
 – Polyester and acrylic nanocomposite
OTR and WVTR Requirements for Different Applications

- Oxygen Transmission Rate (cc/m²-day-atm)
- Water Vapor Transmission Rate (gm/m²-day)

- Rubber products, tires, Sports Balls
- Flexible packaging, Rigid packaging, Medical packaging
- Organic Semiconductors
- OLED’s

©InMat 2005
AFM imaging shows high orientation and Nanodispersion in InMat Nanolok PT coating

Tapping mode height and phase images of the Nanolok PT3575 coating on 500 gauge PET, in cross-section clamped in a plastic vise, 1.5 µm scan size. PET is toward the right-hand side of the image, with Nanolok on the left. Images by PolyInsight
InMat’s Elastomeric Nanocomposites provide a unique combination of flexibility and barrier properties

Relative Oxygen Barrier Effectiveness

Least

Most

Oxygen Permeability (cc-mm/m²-day-atm) at 0% RH and 23°C

Water Vapor Transmission (gm-mm/m²-day) at 23°C

Using Nanolok™ technology in a Butyl Rubber matrix (also available in Nitrile Rubber and Neoprene)
Large oxygen permeability reductions demonstrated with several elastomers

<table>
<thead>
<tr>
<th>Latex Type</th>
<th>% Filled</th>
<th>Permeability (cc-mm/m²-day atm)</th>
<th>X Reduction</th>
<th>% Strain</th>
<th>Key secondary properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butyl</td>
<td>50</td>
<td>0.3</td>
<td>300</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Butyl</td>
<td>30</td>
<td>1.2</td>
<td>75</td>
<td>15</td>
<td>Low Temperature flexibility</td>
</tr>
<tr>
<td>Butyl</td>
<td>20</td>
<td>2.5</td>
<td>36</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Butyl</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene*</td>
<td>30</td>
<td>1.5</td>
<td>83</td>
<td>12</td>
<td>Ozone, UV, oil, and solvent resistance</td>
</tr>
<tr>
<td>Chloroprene</td>
<td>0</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrile*</td>
<td>30</td>
<td>2.3</td>
<td>57</td>
<td>14</td>
<td>Solvent, oil and fuel resistance</td>
</tr>
<tr>
<td>Nitrile</td>
<td>0</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPDM</td>
<td>20</td>
<td>17</td>
<td>11</td>
<td>15</td>
<td>Ozone, UV, sunlight, steam, brake fluid, and weak acid resistance</td>
</tr>
<tr>
<td>EPDM</td>
<td>0</td>
<td>185</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A 50 micron InMat coating provides more chemical protection than a butyl rubber glove.
InMat’s Non-Elastomeric Nanocomposites provide the lowest oxygen permeability of any polymeric coating.
Nanolok™ barrier vs. EVOH, Bairocade & PVDC

Source: PPG, Nippon-Gohsei, Solvin and InMat, 25°C
InMat coatings use nanoclays in a thin coating to provide barrier improvements.

Oxygen transmission rate is reduced by a factor of >100 on PET and >1000 on PP.
Thin coatings of Nanolok PT can provide large reductions in oxygen transmission rate

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Substrate Thickness (microns)</th>
<th>Substrate OTR (cc/m2-day-atm)</th>
<th>Coated Substrate OTR (1 micron Nanolok PT)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET</td>
<td>12</td>
<td>120</td>
<td>0.8-2.0</td>
</tr>
<tr>
<td>BOPP</td>
<td>20</td>
<td>3000</td>
<td>1.5-2.0</td>
</tr>
</tbody>
</table>

The range of OTR is due to variations in substrate surface and coating uniformity due to non-optimized coating process.
Secondary Properties can be controlled by formulation and choice of polymer matrix

<table>
<thead>
<tr>
<th>Aqueous Dispersed Polymer</th>
<th>Oxygen Permeability unfilled (cc-mm/m²-day-atm)</th>
<th>Oxygen Permeability (30-40% filled) (cc-mm/m²-day-atm)</th>
<th>Times reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanolok PT</td>
<td>2</td>
<td>0.002</td>
<td>1000</td>
</tr>
<tr>
<td>Nanolok Ac 1*</td>
<td>9</td>
<td>0.0003</td>
<td>30,000</td>
</tr>
<tr>
<td>Nanolok Ac 2*</td>
<td>30</td>
<td>0.0002</td>
<td>150,000</td>
</tr>
<tr>
<td>Nanolok PVDC*</td>
<td>0.4</td>
<td>0.008</td>
<td>50</td>
</tr>
</tbody>
</table>

* Formulations still under development
Processing

• Nanolok PT has been coated on PET film using a standard roll coating process.
 • 0.2-0.5 micron in a single pass, multiple passes used to increase thickness
 • PE adhesion lamination demonstrated

• High speed roll coating under development.
• Dip coating and spray coating have been demonstrated with both elastomeric and non-elastomeric formulations.
• InMat optimizes formulations to meet the processing needs of its customers.
InMat Coatings Adhere to PET and PP Packaging Film

• Nanolok PT was designed for adhesion to PET film.
 • Adhesion is excellent on corona and/or chemical treated PET.
 • Good adhesion has also been demonstrated on BOPP films

• Nanolok AC formulations have excellent adhesion to PP film.
InMat strategy

- Large (>> 10x) changes in permeability
- Aqueous coating formulations
- Use commercially available nano-clays
- Choose polymer for both barrier and required secondary properties
- Provide cost advantage by material reduction (i.e. replace thick film with much thinner film)
InMat’s Barrier Coating technology is a disruptive innovation for all products requiring gas, vapor, or chemical barriers.
Summary and Conclusions

• InMat has demonstrated its capability to make high barrier nanocomposite coatings with a wide variety of polymers chosen to meet market needs.

• Its technology platform has the clear potential to revolutionize the barrier coating industry.

• Its non-elastomeric barrier coatings provide the most cost effective oxygen barrier coating technology for packaging and other markets.
• Nanolok™ and Air D-Fense™ are trademarks of InMat, Inc.
• InMat® is a registered trademark of InMat, Inc.
• Double Core™ is a trademark of Wilson Sporting Goods.
BACK TO LIST