Advances in protection of Aluminum Oxide using inline vacuum deposited organic top coats

S. Jahromi
Knowfort Technologies BV
- Overview transparent barrier materials
- Overview transparent vacuum deposited coatings
- Main problem with AlOx coated films
- General characteristics of inline organic top coats
- Performance of AlOx + Inline organic top coats
- Conclusion
Transparent barrier materials: An overview

<table>
<thead>
<tr>
<th>Type</th>
<th>WVTR</th>
<th>OTR</th>
<th>Retort</th>
<th>Flexibility & processing</th>
<th>Environment</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVdC</td>
<td>-</td>
<td>+</td>
<td>---</td>
<td>++</td>
<td>---</td>
<td>++</td>
</tr>
<tr>
<td>EVOH</td>
<td>---</td>
<td>++</td>
<td>---</td>
<td>++</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Oxides</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+/-</td>
<td>+++</td>
<td>-</td>
</tr>
</tbody>
</table>

- PVdC Coated films offer the best price vs performance followed by EVOH.
- Main problem with PVdC is dioxin formation upon uncontrolled incineration.
- Main problem with Oxides (AlOx and SiOx) is the high price.

- There is an opportunity for transparent barrier materials that can offer the performance of Oxide coated films but at a price closer to PVdC and EVOH.
Transparent barrier materials: Oxide coated films

<table>
<thead>
<tr>
<th>Coating</th>
<th>Barrier</th>
<th>Flexibility & processing</th>
<th>Capital investment</th>
<th>Price raw materials</th>
<th>Total cost of Ownership</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiOx</td>
<td>+++</td>
<td>+/-</td>
<td>---</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>AlOx</td>
<td>++</td>
<td>---</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

- **SiOx coated films** offer a good performance but at a high price (limited use in high end applications).

- **AlOx coated films** have low cost of ownership (comparable with Al metallization) but the main problem is the high brittleness of these coatings.

- **AlOx coated films** have the potential to capture a large segment of barrier market provided that the problem of brittleness is resolved without significantly increasing the Cost of Ownership.
• Unprotected AlOx is prone to damages during downstream processing steps in particular:
 1. Printing
 2. Extrusion lamination
 3. Retort & sterilization
Main issue with AlOx: Barrier loss upon direct printing (Flexography)

- Barrier values of unprotected PET-AlOx after different stages of conversion:

 ![Effect of direct printing on barrier values of PET-AlOx](image)

- Both oxygen and water barrier are damaged after printing unprotected AlOx films, but while water barrier is somewhat recovered after lamination with PE, oxygen barrier remains low.

 Barrier is significantly deteriorated upon direct printing on AlOx.
Mechanism of barrier deterioration for AlOx

- Extremely thin AlOx layer (10nm) can be damaged upon downstream processing following two mechanisms:

1. **Mechanical**
 a) *Elongation*: Standard AlOx loses barrier above 1% elongation
 b) *Abrasion*: Direct contact with guide rollers resulting in scratches, i.e. loss of barrier.

2. **Chemical**: Some inks components may cause damage to AlOx layer.

- AlOx layer is prone to both mechanical and chemical damages.
Requirements for Top Coat

Ideal Top Coat for packaging applications should have the following characteristics:

• Boost the initial OTR

• Protect barrier during downstream processing steps.

• Compatibel with commercially available inks & adhesives

• Cost effective, i.e. Inline process using inexpensive material

• Compliant with FDA and EU regulations

• Ideal Top coat must comply with a set of stringent conditions
Conventionally AlOx layers have been protected by offline lacquering / priming:

- Offline Top Coat
 - AlOx
 - PET

While offline coatings are effective in protecting the AlOx layer, they result in dramatic increase of the total Cost of Ownership because of:
1. Two step process resulting in additional operational expenses.
2. Additional raw materials costs
3. Additional hardware investment
4. etc

There is a need for a cost effective inline Top coating process.

Inline coating process, branded as Freshure®, is developed by DSM.
Main characteristics of base material & general coating characteristics

- **Base materials**: Technology is based on the vapor deposition of organic compounds.

- **Regulatory**: Materials are compliant with both EU and FDA regulations for application in food packaging.

- **Coating conditions**: Physical Vapor Deposition (PVD) process executed at moderate pressure ($< 10^{-3} \text{ mbar}$) and temperatures ($< 340^\circ\text{C}$).

- **Vapor deposited layer**: Transparent crystalline layer providing excellent oxygen barrier.

- **Hardware**: The hardware is provided by Applied Materials (TopMet Clear™)
General outline of TopMet CLEAR™

Basic System Layout (TopMet CLEAR™):
Al/AIOx + Freshure®

Image Freshure® Evaporator
There are at least 18 different product combinations possible with Freshure® for use in flexible packaging.

In this presentation we will focus on PET-AlOx-Freshure®
Effect of printing & lamination on water barrier

- With inline organic Top-coat water barrier of PET-AIox is maintained after printing & lamination.
With inline organic Top-coat oxygen barrier of PET-AI Ox is boosted and maintained after printing & lamination.
Effect of inline organic Top-coat on barrier retention

- The barrier results presented up to now were obtained using standard corona treated PET.
- Improved barrier results (< 0,5) can be obtained using special grade PET Films.
- Below barrier results are shown for special grade PET coated with AlOx + Inline Organic Top Coat measured after different stages of conversion:

![Graph showing OTR values for different stages of conversion](image)

- Improving surface smoothness of PET film results in higher barrier values after coating with AlOx + Inline Organic Top Coat.
Barrier of unprotected AlOx deteriorates upon elongation.

Inline Top Coat (thickness < 0.01µ) protects the barrier up to 3% elongation with the same performance as offline Top coated AlOx films (thickness > 0.4µ).

Inline organic Top-coat protects AlOx at a fraction of coating thickness as compared with offline coated AlOx.
Effect of elongation on PET coated only with Inline organic Top-coat (without AlOx)

Inline organic Top-coat provide intrinsic oxygen barrier stable upon elongation up to 4%.
Laminated PET-AlOx with and without inline organic Top-coat were subjected to retort process (30 minutes at 121°C):

<table>
<thead>
<tr>
<th>12µPET-AlOx</th>
<th>OTR (cc/m²/day @23°C; 85% RH)</th>
<th>WVTR (gr/m²/day @ 38°C; 90%RH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without inline organic Top-coat</td>
<td>With inline organic Top-coat</td>
</tr>
<tr>
<td>After slitting and lamination*)</td>
<td>< 2</td>
<td>< 1.0</td>
</tr>
<tr>
<td>After retort (30 min at 121°C)</td>
<td>> 5</td>
<td>< 1.0</td>
</tr>
</tbody>
</table>

*) Laminated with BOPA//CPP. Top coated films were laminated on industrial lines whereas results on AlOx without inline organic Top-coat are generated using hand laminates.

- Without inline organic Top-coat barrier properties of PET-AlOx are significantly deteriorated after retort process.
- With inline organic Top-coat barrier properties are boosted and most importantly preserved after retort.

Inline organic Top-coat protects AlOx during retort process.
Compatibility of Inline organic Top-coat with commercial inks & adhesives

<table>
<thead>
<tr>
<th>PET</th>
<th>PE (Sealant layer)</th>
<th>Adhesive</th>
<th>White Ink</th>
<th>Color Inks</th>
<th>Inline organic Top-coat</th>
<th>AIOx</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Adhesive type</th>
<th>Heat sealing</th>
<th>Bond strength (gram/25mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>White</td>
<td>Color on White</td>
</tr>
<tr>
<td>Solvent based</td>
<td>Before</td>
<td>204,0</td>
<td>595,0</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>425,0</td>
<td>816,0</td>
</tr>
<tr>
<td>Solventless</td>
<td>Before</td>
<td>527,0</td>
<td>476,0</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>799,0</td>
<td>867,0</td>
</tr>
</tbody>
</table>

For most applications bond strength above 200 gram/25mm is sufficient.

Typical reverse printed laminate structure

- With the right selection of inks & adhesives bond strengths can be achieved well above threshold value of 200 gram/25mm both in combination with white and color on white prints.

- Heat sealing has a positive effect on bond strength.

- **Inline top coat is compatible with a wide range of commercially available inks & adhesives.**
Conclusions

- AlOx needs to be protected to withstand downstream processing steps in particular direct printing.

- Currently there are two options available in the market for AlOx protection; i.e. offline lacquering and inline organic top coat (Freshure®).

- In this presentation we have demonstrated that inline organic Top-coat protects AlOx during various downstream processing such as direct printing and retort.

- With inline organic Top-coat barrier values below 0.5 for finished laminates are achievable with bond strength > 300 gram/25 mm.

- For large scale penetration of AlOx coated films in transparent barrier market, inline top coating is the preferred option.