Roll-to-roll equipment for atmospheric ALD for solar applications

Raymond Knaapen
VDL Group

- Established in 19 countries
- 85 operating companies
- > 10,000 employees, privately owned
- Turnover 1.8 billion (2013)

Subcontracting:
- Mechatronic systems
- Module assembly
- Part and sheet metal
- Surface treatments
- Plastic processing
- Other specialties

Bus group:
- Touring cars
- Public transport bus
- Mini and midi busses
- Chassis modules
- Second hand trade

Finished products:
- Medical equipment
- Process installations
- Consumer products
- Production automation
- Various products
- Packaging equipment

Car assembly:
- NedCar
The Rise of Printed, Flexible, and Organic Electronics
High-precision R2R Printing & Coating

R&D and pilot/mass production of:
- Flexible OPV and CIGS solar cells
- Large-area OLED lighting
- Flexible displays
- Flexible batteries
- Flexible sensors, circuits, and systems

Grey-room production environment

Cleanroom class 100
Compact R2R Printing & Coating
Purged R2R Lamination Line
Outline

• Introduction Spatial Atomic Layer Deposition
• Spatial ALD for increased throughput
• Application: CIGS solar cell buffer layer
• ALD on flexible substrates
• Results
• Conclusions
What is Atomic Layer Deposition?

Example: Tri-methyl Aluminium + H₂O → Al₂O₃

- Excellent conformality
- Extreme layer thickness control
- Wide variety of materials
- Reactor geometry, flow layout & temperature less critical
- Low contamination

- Low deposition rate
- Inefficient precursor use
- Backside deposition & coating on walls reactor
- Not economically feasible for many applications

ALD reactor

Step 1: Pulse A

Step 2: Purge

Step 3: Pulse B

Step 4: Purge
What is “slow”?

<table>
<thead>
<tr>
<th>“Fast” ALD</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hair</td>
<td>1.25 cm/month</td>
<td>5 nm/s</td>
</tr>
<tr>
<td>Nails</td>
<td>0.1 mm/day</td>
<td>1 nm/s</td>
</tr>
<tr>
<td>Mount Everest</td>
<td>1 cm/year</td>
<td>0.3 nm/s</td>
</tr>
<tr>
<td>Lichen</td>
<td>1 mm/year</td>
<td>0.03 nm/s</td>
</tr>
<tr>
<td>Stalactites</td>
<td>0.13 mm/year</td>
<td>0.004 nm/s</td>
</tr>
</tbody>
</table>
Spatial separation of half-reactions

How to keep reactions separated?

How to do the mechanics?
Spatial ALD with gas bearings

- Gas bearing gap: ~ 20 μm, providing excellent diffusion barrier
- No deposition on reactor walls
- Small reactor volume, high precursor yield
- Atmospheric pressure
- No purge + fast reactions: high deposition rate
ALD for flexible electronics
Thin film encapsulation

Water vapor infiltration: major reliability issue in large area electronics (e.g. ZnO in CIGS, cathode in OLEDs, organic semiconductors)

Encapsulant is required to provide barrier against water diffusion

Benchmarks are: - Water Vapor Transmission Rate (WVTR, g/m²/day) - Oxygen Transmission rate (OTR, cm³/m²/day/atm)
CIGS buffer layer

EU FP7 project R2R CIGS:
- Buffer layer: thin, conformal layer
 - CdS < 50 nm
- Replace CdS in stack with Zn(O,S)
- ALD of Zn(O,S):
 - ZnO using diethylzinc (DEZ) and H₂O
 - ZnS using diethylzinc (DEZ) and H₂S
- Mixed compound
 → O : S ratio enabled by spatial processing
Spatial ALD and premixing of precursors

- Premixing of precursors for mixed compounds: Zn(O,S), ...

- Conventional ALD:
 - Self limiting character of ALD + concurrent reaction kinetics → prevents mixed compounds

- Spatial ALD:
 - Enabler for premixing because of limited exposure time
 - Fine tuning of layer composition, morphology and electrical properties

Spatial ALD and premixing of precursors
Spatial ALD on flexible substrates

Spatial ALD is mainly used on rigid substrates

Does it work for flexible substrates?

Challenges:

- Web deformation and strain
- Contamination
- Thick films
 (as compared to e.g. passivation layers)
- Large substrates
- Temperature limitations
- High-throughput / low cost
Roll-to-roll Spatial ALD: TNO concept

• Center piece: Web surrounding a drum with several reaction zones and gas-bearings
• Web moves left to right (slowly)
• Fast ALD injector rotates right to left (fast)
• Combination gives high deposition rate

• No mechanical contact on deposition side
• Flexibility in web and layer thickness
• Compact

Patents pending
R2R ALD for CIGS tool
R2R ALD for CIGS tool

- Enclosures for thermal insulation and H$_2$S safety
Results

- R2R ALD tool developed for deposition of Zn(O,S) buffer layers
- Contactless gas feedthrough
- Gas bearing of web
- Precursor separation
- Deposition of ZnO and Zn(O,S) done on PI foils, including PI with Mo and CIGS
- Functioning solar cell was made using ALD deposited Zn(O,S) buffer layer
Conclusions & outlook

• Spatial ALD enables thin film deposition rates > 1 nm/s
• This enables application of ALD in low cost applications / R2R
• Mixed compounds such as Zn(O,S) can be made using spatial ALD
• R2R ALD tool (2nd generation) is developed aimed at deposition of Zn(O,S) buffer layers as part of EU FP7 Project R2R CIGS:
 see also http://r2r-cigs.com/
• Deposition of ZnO and Zn(O,S) done on PI foils, including PI with Mo and CIGS
• Functioning solar cell was made using ALD deposited Zn(O,S) buffer layer
Acknowledgements

• European Union:
 – FP7 project R2R CIGS
 – Work package partners

• TNO:
 – Andrea Illiberi
 – Corné Frijters
 – Frank Grob
 – Henk Steijvers
 – Fieke van den Bruele
 – Paul Poodt

• VDL ETG:
 – Matijs van den Boer
 – Roland Tacken
 – Marc Vos
 – Kasper Bosscher
 – Edwin Christianen
 – Peter van den Bogart
 – Timon Nijenhuis
 – Cas Wijnstok
 – Ben van den Elshout
 – Raymond van der Geest
 – Tim Hartvelt
 – Peter van der Heijden
 – An Prenen
 – Auke van der Velde
 – Björn Koningstein
 – Rik Hermsen
 – René Aerts
 – Jan van den Brink
 – Huib van den Heuvel
Questions