Intermittent Coating

A comparison of Three Methods
What is Intermittent Coating?

- The coating of discrete patches on a substrate
- Wide range of industrial uses
 - Flat panel displays
 - Packaging/labeling
 - Masking for IC products
 - Battery electrodes
What are the Common Coating Processes?

- Comma bar or reverse roll
- Slot die
 - Backing roll
 - Tensioned web
- Gravure
- Others?
 - Combinations of slot with roll/gravure
 - Flexo
What is the Fundamental Coating Process?

- Metering of the coating through the fluid delivery mechanism
- Coating deposition onto or transfer to the substrate
- Interruption of transfer to form pattern
Comparison of Coating Processes

• Comma Bar
 – Metering of coating onto transfer roll
 – Reduction in coating thickness at transition pt.
 – Transfer of coating to substrate
 – Movement of nip roll at the point of MFZ

• Slot Die
 – Metering of coating onto substrate
 – Stopping or diversion of coating near the MFZ point
 – Movement of the die or substrate at the MFZ
What about multiple passes?

• Registration process for comma bar and slot die is the same

• Registration of coating passes to each other
 – Feed-forward process control
 – Feed-back process control?
 – Registration sensor types
System Design Considerations

- Product requirements
- Production output or cost considerations
- Intellectual property
Other considerations?

• What are the product requirements?
 – Coat weight or thickness tolerance
 – Dimensional tolerances
 – Registration tolerances
 – Speed of application

• Higher levels of precision and coating speed result in increased cost
Coating Design Parameters

t = coating thickness; microns

L = "mass-free" zone; mm

α = Maximum deviation for "on-coat" and off-coat" taper = 1mm

<table>
<thead>
<tr>
<th>Speed (mpm)</th>
<th>α (mm)</th>
<th>Time for "α" (msec)</th>
<th>Free Zone L (mm)</th>
<th>Total Cycle Time (msec)</th>
<th>Free Zone L (mm)</th>
<th>Total Cycle Time (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>60</td>
<td>30</td>
<td>180</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>40</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>24</td>
<td>30</td>
<td>72</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>17</td>
<td>30</td>
<td>51</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>13</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>
Dimensional Control System

• Time-based
 – Intuitive
 – Flexible
 – Requires adjustment for line speed changes

• Position-based
 – Flexible
 – Operate over a wide range of line speeds
 – Not as intuitive as time-based systems
Significant Factors in Patch Control

• Slurry Properties
 – ZERO air entrainment
 – Consistent rheology

• Process
 – Precise, repeatable control system to manage ΔP
 – Flexible controls that allow for fine-tuning of the coated profile

• QA
 – Capable measurement system to characterize the product
Sample C.B. Motion Profile

Coat

Off-coat

Comma Bar

Off-coat

Coat

Bump Roll

Length Zero (Start of Patch) End of Patch Start of Patch
Sample S.D. Motion Profile

Off-coat

On-coat

Die Movement

Open

Closed

Bypass Valve

Open

Closed

Supply Valve

Length Zero (Start of Patch) | End | Start of Patch
Coated Patch Profile

- Precise control of coating start and stop

- This is usually the desired outcome for a coated patch profile

- A well designed coating process and control system enables full control and flexibility of the product
Typical Intermittent Coating Problems

- This is a typical profile created as a result of an inadequate process and control system.
Typical Intermittent Coating Problems

- Profile caused by air entrapment in the fluid delivery system or air entrainment in the coating fluid
Comma Bar Process Diagram

Coating Supply -> Comma Pond -> Comma Bar -> Bump Roll

Web Direction -> Registration Sensor
Slot Die tensioned Web Process Diagram
Fluid Delivery System
Process Diagram

Delivery Tank

Pump

Filter

Bypass Valve

Supply Valve

Optional, fluid displacement mechanism

Fluid Delivery to Die
Process Capabilities

<table>
<thead>
<tr>
<th></th>
<th>Comma Bar</th>
<th>B.R. Slot Die</th>
<th>T.W. Slot Die</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td><2</td>
<td>>>2</td>
<td>>>2</td>
</tr>
<tr>
<td>Registration</td>
<td>~2</td>
<td>>>2</td>
<td>>>2</td>
</tr>
<tr>
<td>Coat Weight</td>
<td><2</td>
<td>>2</td>
<td>~2</td>
</tr>
</tbody>
</table>

- Process capability (Cpk) tolerances:
 - +/- 1 mm for dimensions
 - +/- 3% for coat weight
- Capability tends to decrease with increasing line speed
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>Comma Bar</th>
<th>B.R. Slot Die</th>
<th>T.W. Slot Die</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of use</td>
<td>Easiest</td>
<td>Most robust</td>
<td>Most difficult</td>
</tr>
<tr>
<td>System design</td>
<td>Easiest</td>
<td>Complicated</td>
<td>Complicated</td>
</tr>
<tr>
<td>Process precision</td>
<td>Least precise</td>
<td>Most precise</td>
<td>Intermediate Precision</td>
</tr>
<tr>
<td>Application speed</td>
<td>Slowest</td>
<td>Intermediate speed</td>
<td>Highest speed</td>
</tr>
</tbody>
</table>
Translating Ideas into Solutions

Innovative Solutions for Advanced Materials Processing

Clean Technologies for Environment, Climate & Energy

Production Efficiency for Printing & Packaging Systems

Questions?