Metallizer Performance Evaluations

AIMCAL Fall 2006 Technical Conference

Eldridge M. Mount III
EMMOUNT Technologies
Performance Evaluations

• Goal is to increase productivity and insure product properties
• Gain control of:
 – Incoming film
 – Machine settings and operation
 – Metallized film properties
 – Yield of product
Incoming Film Control

- Incoming roll properties
 - Gauge uniformity
 - Roll density
 - Storage conditions (control out gassing)
 - Formulation selection for metallizer

- Film Testing for Uniformity
 - Roll appearance
 - Roll density
 - COF
 - Treatment Level & Location
 - Film strength (material & Thickness)
Poor Quality Input Roll

Gauge uniformity problem

Poor wind of input roll

Poor slitting, edge quality
Additive Formulation Impact on Film

- Rail Road Tracks
- Film Blushing
- Contamination and Static tracks
Process Monitoring and Control

• Characterize performance of equipment
 – Cycle time / productivity
 – Product yield

• Control chart critical parameters
 – Process parameters
 – Product properties

• Experimental Performance evaluations
 – Designed Experiments for optimization
Machine settings and operation

- Chamber open time
- Time to metallization pressure
- Starting vacuum level
- Unwind / breaking tension
- Line speed
- Film cooling temperature
 - Metallization zone
 - Post metallization

- Wire Speed
- Optical density
 - Average
 - Point to point
- Final vacuum level
- Rewinding tension
- Final roll temperature
 - Metallized film
Process Charting of A Metallizer

New Boats Change Operator

- Wire Feed Rate
- Line Speed

Roll Number

- Wire Feed Rate
- Line speed
Performance Evaluation Using Designed Experiments

- Determine product performance
- Characterize a process
 - Trouble shoot a process
- Improve the transfer of information
 - Create compact descriptions of the information
 - Quantification of errors
- Improve efficiency of experimentation
Metallizer Quality Measures

- “Appearance”
- Optical density level & variability
- Metal adhesion
- Gas & Moisture Barrier
- Surface resistivity
- Roll conformation
- Metal pickoff

Operating Parameters of Metallizers

- Unwinding speed
- Web tracking and tension control
- Vacuum level
- Evaporation control
 - Boat temperature (voltage & current)
 - Wire feed rate
- Web cooling
- Rewinding speed
Principle Metallization Variables

- **Independent variables**
 - Vacuum level
 - Optical density
 - Film Formulation
 - treatment level
 - COF technology
 - Web cooling conditions
 - Tension levels
 - Boat conditions
 - Mechanical condition & Cleanliness of rolls

- **Dependent variables**
 - Appearance
 - Optical uniformity
 - Metal adhesion
 - Barrier properties
 - Web speed
 - Exit roll temperature (pick off)
For New Product or Metallizer

• Screening experiment
 – Determine most significant variables
• Fractional factorial
 – Main effects and interactions
 – Linearity
• Surface Response Experiment
 – Higher order effects
• Optimization experiments
 – signal to noise ratio
Box-Behnken Experiment

<table>
<thead>
<tr>
<th>Treatment combination</th>
<th>Vacuum</th>
<th>Roll Temperature</th>
<th>Optical Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Center point</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Measure dependent variables

- Oxygen permeability
- Optical Density Variation (number of peaks)
- Metal Pick off
 - 610 tape
 - 600 tape
- Final roll Temperature
- Contact angle
Curve Fit Results to Experiment Model

- \(Y=a_0+a_1X_1+a_2X_2+a_3X_3+a_4X_1X_2+a_5X_1X_3+a_6X_2X_3+a_7X_1^2+a_8X_2^2+a_9X_3^2 \)
 - \(X_1=\)Vacuum Pressure \(10^{-5} \) to \(10^{-3} \)
 - \(X_2=\)Roll Temperature \(-15 \degree C\) to \(+15 \degree C\)
 - \(X_3=\)Optical Density \(1.5\) to \(3.0\)

<table>
<thead>
<tr>
<th>Property</th>
<th>½[MIN(_{90})]</th>
<th>Mean</th>
<th>P</th>
<th>T</th>
<th>OD</th>
<th>P*T</th>
<th>P*OD</th>
<th>T*O</th>
<th>P(^2)</th>
<th>T(^2)</th>
<th>OD(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO2</td>
<td>1.9</td>
<td>9.67</td>
<td>2.88</td>
<td>2.06</td>
<td>-11.96</td>
<td>2.06</td>
<td>3.28</td>
<td>-0.74</td>
<td>-5.69</td>
<td>7.66</td>
<td>8.07</td>
</tr>
<tr>
<td># OD peaks</td>
<td>1.37</td>
<td>5.67</td>
<td>2.12</td>
<td>0.0</td>
<td>-1.88</td>
<td>-0.25</td>
<td>0.0</td>
<td>0.25</td>
<td>2.17</td>
<td>1.42</td>
<td>0.17</td>
</tr>
<tr>
<td>Pick off 600 tape</td>
<td>8.42</td>
<td>16.7</td>
<td>-3.12</td>
<td>-10.3</td>
<td>-5.3</td>
<td>8.75</td>
<td>2.50</td>
<td>-1.88</td>
<td>2.60</td>
<td>1.98</td>
<td>-0.52</td>
</tr>
<tr>
<td>Pick off 610 tape</td>
<td>none</td>
</tr>
<tr>
<td>Receding Contact angle</td>
<td>1.50</td>
<td>48.7</td>
<td>-1.16</td>
<td>0.538</td>
<td>-4.0</td>
<td>-3.12</td>
<td>8.2</td>
<td>0.45</td>
<td>3.06</td>
<td>-1.89</td>
<td>2.04</td>
</tr>
</tbody>
</table>
Demonstrates

• Importance of chamber pressure on properties
 – Starting pressure level
 – Time to starting vacuum
• Counter intuitive impact of chill roll temperature
 – Hotter can be better
• Interactions between Process variables common
• Some tests do not differentiate property
 – 610 vs. 600 tape
Utilization of results

• Set limit on pressure for metallization
 – Insure barrier properties
 – Improve optical density uniformity

• Implement maintenance schedule based on process
 – Time to start pressure

• Establish optimum process conditions
 – Chill roll temperature

• Establish tests to differentiate performance
Conclusions

• Process monitoring / control charting important
• Process studies and optimization experiments can be used to improve:
 – operating performance
 – Insure film properties
 – Minimize property variation
• Should be conducted:
 – on all production machines
 – For each base sheet / product type
Thank You

Questions & Comments