Barrier Coatings for Flexible Substrates

Bob O’Boyle
Product Manager - Coatings
Presentation Content

• What are Nanoparticles
• How are they used
• Properties of Barrier Coatings
• Industrial Applications
• Technical Details
• Value Summary
What is a Nanoparticle?

Nano, a prefix meaning "dwarf" in Greek, also means one billionth. A nanometer is therefore one billionth of a meter. To provide a sense of scale, here are the measurements of some common objects.

Tennis Ball 100,000,000 nm

Bacteria 1000 nm

Virus 100 nm
Nanoparticles in Coatings

• Since the 1990’s, Nanoparticulates have shown promise in coating formulations. In packaging applications they most notably improved barrier to gases, aroma and UV light.

• Early problems with instabilities and poor coverage have been for the most part eliminated with improved formulations and press techniques.
Finely dispersed nanoparticulate (intercalated/ exfoliated) silicate mineral in a polymer solution/ dispersion

Functional oxygen barrier of less than 0.06 cm3/100 inch2/24h at 23°C & 50%RH on PET are routine
Industry Uses for Barrier Coatings

- To replace PVdC and EVOH in flexible food and non-food packaging applications
- To enhance or replace metallized, AlOx and SiOx structures
- Dry and chilled food packaging
- Liquid packaging
- Flexo, gravure or roller coat processes
Industry Uses for Barrier Coatings

Oxygen Barrier: light weighting example

Removal of metal foil and one layer of adhesive
Lighter weight packaging (up to 30% reduction)
Improved laminate integrity (post flexing O₂ barrier improvement)
Industry Uses for Barrier Coatings

Oxygen Barrier: replacement example

Commercial 2-Ply Laminate

- PET Film
- PVdC coated PET
- Ink
- Adhesive
- Polymer Film

New 2-Ply Laminate plus printable barrier coating

- PET Film
- Barrier Coating
- Ink
- Adhesive
- Polymer Film

No chlorine
Increased sales opportunity for converter
Improved O2 barrier
Improved shelf life
Industry Uses for Barrier Coatings

Oxygen Barrier: enhancement example

Commercial 3-Ply Laminate

New 3-Ply Laminate plus printable barrier coating

Lower cost than alternative high performance barriers
Technical Details

• How do they work
• Barrier performance on different substrates
• Improvements in Flexibility
Nanoparticles in Coatings

SEM: Agglomerated Clay

TEM: Nanocomposite Coating

Cast of Dilute Coating on Cu Grid
The Effect of Exfoliation on the Visual Appearance of NanoComposites

Unfilled Polymer

Non-Exfoliated Clay (Tactoid)

Exfoliated Clay Nanocomposite
The generally accepted theory for barrier improvement is that dispersed/exfoliated ‘platy’ minerals increase the diffusion path length through a coating; ‘\textit{TORTUOUS PATH’}.

\[d_2 > d_1 \]
Oxygen Transmission Rates of Typical Flexible Packaging Materials

Printable Oxygen Barrier Coatings will offer an alternative to existing High Barrier Options.
Overview of Gas Barrier Coating Performance on Different Substrates

The graph illustrates the oxygen transmission rate (cm³/m²/day) for different substrates with and without coatings, at 23°C and 50%RH and 23°C and 75%RH.

Oxygen Transmission Rate

<table>
<thead>
<tr>
<th>Substrate</th>
<th>No Coating</th>
<th>23°C/50%RH</th>
<th>23°C/75%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET</td>
<td>100-110 cm³/m²/day</td>
<td>1250-1350 cm³/m²/day</td>
<td>Value for Commercial PE-EVOH Laminate (23°C & 50%RH)</td>
</tr>
<tr>
<td>OPP</td>
<td>100-110 cm³/m²/day</td>
<td>1250-1350 cm³/m²/day</td>
<td>Value for Commercial PE-EVOH Laminate (23°C & 50%RH)</td>
</tr>
<tr>
<td>OPA</td>
<td>100-110 cm³/m²/day</td>
<td>1250-1350 cm³/m²/day</td>
<td>Value for Commercial PE-EVOH Laminate (23°C & 50%RH)</td>
</tr>
</tbody>
</table>
Overview of Gas Barrier Coating Performance on Different Substrates

The clay composite coatings provide excellent barrier performance on both PET and OPP with dry film weights as low as 0.2 g/m² (dry).

![Graph showing OTR vs. Dry film weight for 25μm OPP and 12μm PET](image)
Overview of Gas Barrier Coating Performance on Different Substrates

![Graph showing OTR @ 23°C & 50%RH for different substrates against the number of Gelbo Flexes. The substrates include PET-AIOx, PET-SiOx, PET-PVDC, PET-EVOH, and PET-O2 Barrier. The graph indicates the performance of each material under varying conditions.]
Performance Benchmark – Effect of Humidity

Oxygen Transmission Rate

- SunBar-PET
- PE/EVOH/PE-PET
- PVdC-PET

% Relative Humidity
Humidity Model on PET Single Layer and Lamination

<table>
<thead>
<tr>
<th>External Side</th>
<th>PET</th>
<th>O₂ Barrier Coating</th>
<th>Internal Food Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>65% RH</td>
<td>33.5</td>
<td>1.0</td>
<td>0% RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12μm PET / coating</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Side</th>
<th>PET</th>
<th>O₂ Barrier Coating</th>
<th>Adhesive</th>
<th>PP</th>
<th>Internal Food Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>65% RH</td>
<td>55.6</td>
<td>60.3</td>
<td>30.1</td>
<td></td>
<td>0% RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12μm PET / coating plus adhesive / 50μm PP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Side</th>
<th>PP</th>
<th>Adhesive</th>
<th>O₂ Barrier Coating</th>
<th>PET</th>
<th>Internal Food Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>65% RH</td>
<td>34.9</td>
<td>4.7</td>
<td>2.3</td>
<td>0% RH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12μm PET / coating plus adhesive / 50μm PP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Humidity Model on OPP Single Layer and Lamination

<table>
<thead>
<tr>
<th>External Side</th>
<th>BOPP</th>
<th>O₂ Barrier Coating</th>
<th>Internal Food Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>65% RH</td>
<td>32.5</td>
<td>0.0</td>
<td>0% RH</td>
</tr>
<tr>
<td></td>
<td>12μm BOPP / coating</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Side</th>
<th>BOPP</th>
<th>O₂ Barrier Coating</th>
<th>Adhesive</th>
<th>PP</th>
<th>Internal Food Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>65% RH</td>
<td>37.9</td>
<td>10.8</td>
<td>5.4</td>
<td>0% RH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12μm BOPP / coating plus adhesive / 50μm PP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Side</th>
<th>PP</th>
<th>O₂ Barrier Coating</th>
<th>Adhesive</th>
<th>BOPP</th>
<th>Internal Food Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>65% RH</td>
<td>59.6</td>
<td>54.2</td>
<td>27.1</td>
<td>0% RH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12μm BOPP / coating plus adhesive / 50μm PP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Application Data

• Nano clay materials are often supplied in two or more parts that need to be mixed together before use.
 – Newer versions are available as a one part.
• Keep from freezing.
• There is a relationship between the applied coating weight and the level of barrier achieved.
Application Data

• We would expect for approx. 25% of the volume of the anilox to transfer onto the substrate.
• Corona treat films before coating. It will enhance adhesion and improve lamination bond strength.
Value Proposition Summary

• **Market**
 – Chlorine-free
 – Enable light weighting
 – Improve sustainability
 – Remove metal
 – Transparent
 – Improve ability to recycle
 – Alternative to expensive barrier films
Value Proposition Summary

• **Barrier**
 – Excellent O2 barrier
 – Excellent aroma barrier
 – Replace PVdC and EVOH coatings
 – Improve flex crack resistance of oxide/metallized films
 – Extend shelf life
Value Proposition Summary

- **Application**
 - Can be applied at conventional film weights depending on the structure and barrier required
 - Coatings can be applied on existing equipment
 - Enable removal of barrier film and adhesive in 3 ply, and more, laminates
 - Reduction in processing waste
 - Reduction in energy
 - Allow duplex laminates to compete with triplex
Thank You

Robert O’Boyle
Product Manager - Coatings
Sun Chemical Corporation
35 Waterview Boulevard
Parsippany, NJ 07054
T +1 973-404-6288
F +1 973-404-6877
M +1 973.615.0243
robert.oboyle@sunchemical.com