Life Cycle Inventory Gate-to-Gate of Metallized Biaxially-Oriented Polypropylene

M. Luhrs¹, E. Griffing¹, M. Realff², and M. Overcash^{1,2} ¹Environmental Clarity, LLC ²Georgia Institute of Technology

> Presented at AIMCAL Fall Technical Conference October 18, 2010

Multilaminates

- Important in packaging
- Wide array of
 - Materials
 - Number of layers
 - Weights

Multilaminate Packaging Database

- Objectives
 - Introduce life cycle technology as a tool for evaluating the broad concept of packaging improvement
 - 2. Identify the recurring materials and processes that make up 90% of all multilaminate packaging and begin to assemble these as a database
 - 3. Begin to establish a consortium of users for this life cycle information

Related issues addressed by life cycle information

- 1) Green purchasing
- 2) Carbon footprints
- 3) International labeling or US rating systems
- 4) Demand for recycle content from consumers
- 5) Corporate sustainability policies
- 6) CO_2 (or other emissions) trading credits
- 7) Challenges of landfill shortages over the long term
- 8) European and Japanese government initiatives to require full life cycle responsibilities

Multilaminate Packaging

Layers representative of multilaminate sealed pouch for snack food

Layer	Thickness (microns)
printed oPP	17.0
Adhesive, ethylene - vinyl acetate copolymer 93 moleP E,	0.5
polyethylene	48
Adhesive, ethylene - vinyl acetate copolymer 93 moleP E	0.5
Metalized oPP, 125 nm aluminum	12.0
Total	78

Metallization on oriented polypropylene (OPP)

• Aluminum wire

UIDLiquidAluminum \rightarrow UIDAluminumwire \rightarrow Al(s) \rightarrow Al(l) \rightarrow Al(g) [+ oPP] \rightarrow metallized oPP film

- Boat devices (boron nitride-titanium diboride) for melted aluminum to be vaporized
- Reel to reel winding (50,000 m by 3 m wide)
- Vacuum chamber (5 E-07 atm)

Mass Balances

Mass of Aluminum on 50,000 meters long by 5 meters while ro							
50,000 meters long by 3 meters wide							
(metallization of oPP) roll							
Aluminum	Total OPP	Total OPP Aluminum Mass of					
thickness	output	volume	Al	aluminum			
nm	m^2	m^3	kg/m ³	kg			
125	1.50E+05	1.74E-03	2700	4.70			

Mass of Aluminum on 50,000 meters long by 3 meters wide roll

4 sources describe the aluminum vaporized that is not on film (50% - 65% We used 55 wt% as representative

Boats

Aluminum distribution from single boat=16 inches				
sheet width				
(inches)	number of boats			
204	12.75			

Loss from boat deterioration

deterioration					BN*	B ₂ Ti*
(lbs)		hr	lbs/hr	kg/hr	kg/boat/hr	kg/boat/hr
0.500	per	15.0	0.0333	0.0151	7.56E-03	7.56E-03

*50/50 wt% boron nitride /titanium diboride assumed

Energy Balances per 1000 kg oPP metallized

Process Diagram Label	Unit	Energy input [MJ / 1000 kg Product]	Energy Type
Hx1 (Al melt)	Heat exchanger 1	195	E
Hx2 (Al vapor)	Heat exchanger 2	2230	E
vacuum pumps	vacuum pumps	39.6	E
	Potential recovery	0	
	Net energy		
	Electricity	2465	
	DowTherm	0	
	Heating steam	0	
	Direct fuel use	0	
	Heating natural gas	0	
	Diesel process	0	
	Undefined	0	
	Energy input requirement	2465	
	Cooling water	0	
	Cooling refrigeration		
	Potential heat recovery	0	
	Net energy	2465	

2 Sources describe energy use for metalizing as 30%-35% direct and balance as heat loss – already included here

Summary of LCI Information

Inputs							
Input UID	Input Name	Input Flow	Input purity	Units	Comments		
UIDBoPP	BoPP	970		[kg/hr]			
UIDAluminumwire	Aluminumwire	54.8		[kg/hr]			
	Total	1025		[kg/hr]			
	Non-re	eacting inpu	its				
UID	Name	Flow	Purity	Units	Comments		
12045-63-5	titanium boride	2.08e-2		[kg/hr]			
10043-11-5	Boron nitride	2.08e-2		[kg/hr]			
	Total	4.15e-2		[kg/hr]			

Basis 1,000 kg/hr of oPP metallized

Basis 1,000 kg/hr of oPP metallized

Products						
Product UID	Product Name	Product Flow	Purity	Units	Comments	
UIDOPP125nmA1	OPP125nmAl	1000		[kg/hr]	125 nm aluminum on 12 micron oPP	
	Total	1000		[kg/hr]		

Basis 1,000 kg/hr of oPP metallized

Chemical Emissions							
Emission UID	Emission Name	Gas Flow	Liquid Flow	Solid Flow	Solvent Flow	Units	
12045-63-5	titanium boride	0	0	2.08e-2	0	[kg/hr]	
10043-11-5	Boron nitride	0	0	2.08e-2	0	[kg/hr]	
UIDAluminumwire	Aluminumwire	0	0	24.7	0	[kg/hr]	
Totals		0	0	24.7	0	[kg/hr]	

Basis 1,000 kg/hr of oPP metallized

Energy use						
Energy type	Amount	Comments				
electricity	2465	[MJ/hr]				
Net input requirement	2465	[MJ/hr]				
Net energy	2465	[MJ/hr]				

This is process energy Using 3.1 MJ fuel/MJ electricity and 1.1 MJ fuel to deliver fuel to electric power plant 2,465 MJ/hr = 8,400 MJ natural resource energy

This is about 500 kg CO₂e/1000 kg oPP metallized

Conclusions

- Demonstrated the use of life cycle inventory (lci)
- Integration of process mass and energy information to obtain representative metallizing lci
- These results can be directly scaled to yield
 - different aluminum levels
 - different metals
 - different films
- The metalized film is one of the examples of the database on multilaminate packaging