Web 101.87SM – Roller Maintenance

The Why/When/How of Roller Repair/Replacement

© 2016
David Roisum, Ph.D.
Finishing Technologies, Inc.
Why Repair/Replace?

- Rollers *did* break (unplanned)
- Rollers *might* break (PM)
- Rollers are slowly *wearing out*
 - Cylindricity etc degrading on
 - Forming or Process Rollers
 - Increasing costs of
 - Waste
 - Delay
 - Customer Complaint
 - Etc
Roller Breakage

- Failures
 - Bearings
 - Journals
 - Covers
 - Coatings
- Fortunately uncommon because of hazards
- Read accompanying white paper for details
- Note that PM is also uncommon
Simple Roller Wear Patterns

- Coarse Scale
 - Taper
 - Smile
 - Frown

- Fine Scale
 - Ridge
 - Valley
 - Step
Machine Element Reliability

- The Weibull Distribution

![Weibull Distribution Diagram](https://en.wikipedia.org/wiki/Bathtub_curve#/media/File:Bathtub_curve.svg)
Costs to Repair

$1K/wk

\[C_{repair} = \frac{C_{down} + C_{regrind} + \frac{C_{replace}}{N}}{t} = \frac{A}{t} \]

Downtime + Regrind + Replace

Time (weeks)
Costs to NOT Repair

Time (weeks)

$1K/wk

Costs to NOT Repair

Waste
Delay
Complaint

Baseline: Other Causes

Not Repair
Optimum Service Interval

Costs To Repair and NOT Repair and Total

Total Cost
Waste
Delay
Complaint
Downtime + Regrind + Replace

Optimum Service Interval

Time (weeks)

$1K/wk
Example Calculation

- Application: paper mill supercalender roll

- Costs to Repair
 - $10,000 downtime etc
 - $10,000 roller regrind
 - $30,000 roller refurbish w 10 regrinds/refurbish

- Costs to NOT repair
 - Corrugations
 - Bagginess
Internal Waste Costs vs Time

$1K/wk

Time (weeks)

Not Repair 4 cycles

Timing of repair

87.10
Waste (etc) Avg & Regression

\[C = 5.153030808 \cdot 10^{-3} x^2 + 2.902808091 \cdot 10^{-2} x + 5.154889796 \]

\(R = 0.87 \)

Cost to NOT Repair Avg and Regression

\$1K/wk

Time (weeks)

Average Regression
Minima Using Calculus

- When slopes are equal but of opposite sign
- Solving for roots can be unreal, literally

\[\frac{dc_{\text{repair}}}{dt} = \frac{A}{t^2} \]

\[\frac{dc_{\text{NOT repair}}}{dt} = E + 2Ft \]

\[-A + 0Dt + Et^2 + 2Ft^3 = 0\]
Total Cost and Optimum Service Interval

$1K/wk

Time (weeks)

Total Costs

Economic Optimum

Might Notice
Other Opportunities? (After Accounting for *That* Roller)

$1K/wk

Residuals = Fit - Actual

Time (weeks)
Example Summary

- **Optimum service interval**
 - 7-21 weeks via visual minima
 - 14 weeks via polynomial curve fit

- **Minimum total costs**
 - $8,400/week ($436K/yr) of which
 - $5,000 defects *not* associated w calendar wear
 - $1,200 more defects than when brand new
 - $2,200 repair costs
So What?

- It would take 30 weeks for defects to double their minimum rate and be clearly noticed

- $11,100/week at 30 weeks
- $8,400/week at optimum of 14 weeks
- $2,700/week savings using optimum

- $140,000/year for a single key element!
How to Change Roller

• Safely
 – Lock-Out-Tag-Out
 – Scripted plan such as
 – Gantt Chart
 – Take-Two (DuPont)

• Efficiently
 – SMED
 – Scripted plan such as
 – Gantt Chart

• Also consider
 – Spares
 – Grind Quality
 – Storage
 – Rigging

87.17
Other Applications

- **Film**
 - Die cleaning
 - Tower nip replacement

- **Foil**
 - Rolling mill service

- **Paper**
 - Slice maintenance
 - Wire change
 - Felt change
 - Calender roller change

- **Printing**
 - Anilox cleaning
 - Blanket change

- **Slitting**
 - Blade change
Future Study

• More case histories
• Analysis using roots of cubic equation
• Preventative Maintenance
 – Use probability of unplanned downtime as a NOT repair cost
Questions?

Answers:
David Roisum, Ph.D.

http://www.webhandlingblog.com/
http://www.roisum.com
drroisum@aol.com
920-725-7671 office
920-312-8466 cell