Web 101.86SM – Good Winding Starts

The First Five Seconds

© 2016
David Roisum, Ph.D.
Finishing Technologies, Inc.
First Seconds are Important

• Tension challenged during
 – Roll change
 – Speed change

• Tension one of the TNT’s of winding
 – Becomes relatively more important due to low effectiveness of nip just above core

• Nip uniformity challenging near core

• Path upsets worse near core

• Many winding defects favor core area
Ideal Tension Sequencing

- Thread square and evenly taut
- Back/stall tension unwind or pretension windup
- Allow accel to begin only after load cell sees substantial tension
- Single Round-Ramp-Round ‘S’ Curve
- Typical: accels 5-40 mpm/sec, round 1-3 secs
Core & Splice Alignment Errors

• Offset
 – Easy to detect

• Angular
 – Insidious
 – Causes a decaying oscillation

• Wrinkle in Web or on Core
 – No-brainer no-no

• Upstream slack
 – Pull more web through
Core Deflection & Wrinkles

• Simple Centerwind
 – Acts like a bowed roller, pointing backwards
 – Fan or frown shaped wrinkling pattern

• With Layon Roller
 – Pinch on end, open at middle:
 – Fan or frown shaped wrinkling pattern
Other Core Issues

- Poor Cylindricity
- Excessive Deflection
- Eccentric Chucking
- ESPECIALLY with AIR SHAFTs
- Variability of winding tightness with Slipped Core Winding

- Weight and Torque Capacity (Telescoping I)
Core Crush

• Adjust Wound-in-Tension First
 I. Looser if crush during winding (e.g. film)
 II. Looser if crush due to material shrink (rare)
 III. Tighter if crush during handling (e.g. paper)

• Redesign Cores Next
 – Wall thickness increase (most powerful)
 – Core diameter decrease (if customer allows)
 – Core plugs (narrow rolls Cases II & III)
 – Stronger core (using better grade of fibers)
Wet Cores > Loose Cores II

- Wet cores will dry
- Dry cores shrink > get shorter
- Dry cores shrink > loose cores

Best Practices
- The best cores are uniformly kiln dried to user’s environment.
- The best cores are stored in conditioned or hot room
- The best operators don’t pull cores out until needed
Wet Cores or Loose Winding?

Wet cores
- Winding on **fiber cores** wetter than equilibrium with customer
- Web is **stiff** in MD & ZD
- **Seasonal complaints** peak
 - Dry climates
 - Dry seasons

Then
- Best core practices or
- Waxed cores

Loose Winding
- Rolls are loose near the core right after winding

Then increase
- Tension
- Nip
- Torque
- Speed (decrease)
Telescoping Ia&Ib - Diagnosis

- J-line interlayer slip near core during center wind / unwind
- Due to insufficient
 - Interlayer pressure
 - Web-Web friction coefficient
 - Core diameter
- to transmit center torque without slippage
- J-line check:
 - Does not J-line ever – then a different type of ‘telescope’
 - J-line motion during winding or unwinding. Rotate roll \textit{without} applying torque and re-check J-line
 - If J-line slippage: due to \textbf{weight} induced nip above core
 - If no J-line slippage then, but does slip when torque applied: due to \textbf{torque}
Other Defects Favoring Core Area

- **Blocking** due to a combination of interlayer pressure, weight and surface chemistry of web
- **Looseness** near core due to mechanical vibration, air entrainment and radial stiffness that makes nip less effective
- **Core bursts** (crepe wrinkles near core)
- **Interweaving** (or tie-ups on two-drum winders)
- **Offsets** and rough roll edges
- **Telegraphing** (damage of lumpiness near core ruining layers above)
- **Wrinkles**
Questions?

Answers:
David Roisum, Ph.D.

http://www.webhandlingblog.com/
http://www.roisum.com
drroisum@aol.com
920-725-7671 office
920-312-8466 cell