Web 101.73SM – When to Move
Roller Alignment - Standards

©2012
David Roisum, Ph.D.
Finishing Technologies, Inc.
Why is Alignment So Important?

Affects the Web:

- Flatness: Bagginess and apparent Bagginess
- Position: Path and Registration (e.g. Printing)
- Runnability (Web Breaks)
- Winding: Roll Quality
- Wrinkles
Two Views of Alignment

• Mechanical
 – Level
 – Square
 – Common Centerlines
 – See Web101.72
 – Roller Alignment - Mechanics

• Web Handling
 – In-plane (bending)
 • Path control
 • Web breaks
 • Wrinkles
 – Out-of-plane (twisting)
 • Web damage or breaks at edges
 • Center wrinkle
 – Offset Centerlines
 • Guide runs off center
 • Web runs off center
In-Plane Bending

- a.k.a., i.e.
 - Not parallel
 - Not trammed

- THE MOST SERIOUS RISK
 - Path Control
 - Web breaks
 - Wrinkling
 - etc
In-Plane Bending: Stresses-Strains

- **Physics:**
 - **Normal Entry Law:**
 - Web enters a roller in traction at a right (normal) angle

- **Explains**
 - Guides
 - Roller Misalignment
 - Spreaders
 - etc

- **Can Cause**
 - Web Breaks
 - Slack Web
 - Wrinkles
 - Path Change
 - etc
Out-of-Plane Twisting

• a.k.a, i.e.
 – Twist
• Very Tolerant
 – Difficult to Overstress
 – No path change
• Applications:
 – Displacement Guide
 – Some Dual Spreaders
Out-of-Plane Twisting: Stresses-Strains

- No Path Change
- High Stresses at Edges
- Center MD Bagginess/Wrinkle possible
Emergency Alignment

- Wrinkles are found at roller #3 and cause the web to break
- Question: **Which roller** (1-4) should be moved in **which direction** (horizontal, vertical, other)?

Hint:
Practical Alignment

• Which rollers and directions is alignment most needed?
 – Level – easy
 – Square – requires optics
Existing Alignment Guidelines

- **Categories**
 - **None** – great majority of builders, suppliers and owners of web machinery
 - **100 micro-radians**
 - (0.1 mm per meter)
 - Converting builders
 - Roller builders
 - Consultants
 - **20 micro-radians**
 - Paper mills (dry end)
 - **5 micro-radians**
 - 1st order optical tooling

- **Problems**
 - Few subscribe to anything
 - Paper mill (optical) alignment based on what we could do instead of what we should do
 - Single sided
 - Ingoing (if you move)
 - Outgoing (when you move)
 - One size fits all may fit most poorly
Calculation Based

- For Each Critical/Typical Roller, Web and Direction
 - Path Control
 - Web Breaks (Critical Angle to Inside Edge Slackness)
 - Wrinkling (Critical Angle to Diagonal Shear Wrinkle)

Gehlbach, Lars S. and Good, J.K and Kedl, Douglas M.
TopWeb

- Rheologic Spreadsheet Calculation Tools
- Only Commercial Web Handling Program
 - Roller alignment
 - Spreader Sizing
 - Winding
 - etc
- Calculate Angle
 - Before Edge Goes Slack
 - Before Diagonal Wrinkling
TopWeb – Roller Align etc
Empirical

- For Each Critical/Typical Roller, Web and Direction
 - Wrinkling (Critical Angle)
- Move roller while running, observe when diagonal wrinkle starts

Points to Narrow side

Walks ‘Uphill’
A Question of Safety Factors

• For Each Critical/Typical Roller, Web and Direction
 – Path Control
 – Web Breaks (Critical angle to Slackness)
 – Wrinkling (Critical Angle)

Having No Safety Factor Guarantees Instant Failure

• Insults are additive
 – Bagginess
 – Roller delta D
 – Roller Misalignment
 – Drive/Tension delta

Mean Distance Between Breaks (ft)

Web Tension Load (PLI)

± ± Confidence Envelope
Based on data set variability only. Does not include model uncertainty.
Ingoing Suggestions

- Ingoing (when rollers are moved)
 - Installation
 - Maintenance
 - Response to problems
 - Path
 - Web Breaks
 - Wrinkle
- 20 micro-radians
- Design for Service (Alignability)

- Unless
 - You Know Better
 - You Need Better
 - Foil
 - Segmented roller gaps
 - You Can’t Get (Afford?) Better
 - See upcoming slide
Outgoing Suggestions

• Outgoing (*Should* rollers be moved?)
 – Response to known misalignment problems
 • Path
 • Web Breaks
 • Wrinkles (diagonal)
• Calculate or Measure ‘threshold of pain’
• Safety factor of 4-10
 – Similar to tension

• Classes
 A – < 20 micro-radian tooling, brittle webs
 B – 20 micro-radian paper, metal
 C – 100 micro-radian converting
 D – 1000 micro-radian rubber, textiles
 F - > 1000 micro-radian web handling fail
A Few Challenges

• **Design**
 – Bearing housings at angle
 – Bearing housing that have no shear ledge
 – Bolt bound designs

• **Rollers**
 – Poor maintenance
 – Loose mounts
 – Flimsy frames

• **Special**
 – Pivoting rollers
 – Curved axis rollers
 – Skew rollers

• **Web**
 – Foil

• **Management**
 – Insufficient Time
 – No money
 – Culture
 – Lack of Guidance
Review Questions

• What are the web based definitions of misalignment?
• What methods might you use to establish a threshold of pain?
• What about a safety factor?
Review Answers

• What are the web based definitions of misalignment?
 – In-plane bending, out-of-plane twisting, offset centerlines

• What methods might you use to establish a threshold of pain?
 – Move/measure roller to onset of wrinkling, calculate via TopWeb

• What about a safety factor?
 – Above guarantees instant failure, need to be 4-10X tighter
Questions?

Answers:
David Roisum, Ph.D.

http://www.webhandlingblog.com/
http://www.roisum.com
drroisum@aol.com
920-725-7671 office
920-312-8466 cell