Enhancement of Protective Packaging Films with Cyclic Olefin Copolymers (COC)

Paul D. Tatarka
Polyplastics USA, Inc.
Florence, KY

2018 R2R Conference USA & SPE FlexPackCon
October 28-31, 2018
Phoenix, AZ
 Outline

- What is COC, Properties & Applications?
- Protective Packaging
- Protective Packaging: Key COC Performance Benefits
- Conclusions
What is COC, Properties & Applications?
COC molecule is a chain of small CH$_2$-CH$_2$ links randomly interspersed with large bridged ring elements.

It cannot fold up to make a regular structure, i.e., a crystallite.

COC has no crystalline melting point, but only a glass transition temperature, T_g, at which the polymer goes from “glassy” to “rubbery” behavior.
Cyclic Olefin Copolymer - Synthesis & Structure

- Readily available raw materials
- Highly efficient catalyst
 - Low usage
 - Catalyst removed as part of process
- High purity product
- Amorphous
- Crystal clear

\[\text{Ethylene} + \text{Cyclopentadiene (C}_5\text{H}_6\text{)} \rightarrow \text{Norbornene} \]

Metalocene Catalysis

\[+ \text{Ethylene} \]

\[\text{COC} \]

\[\text{Ethylene} \quad \text{Ethylene} \]

www.topas.com
COC - Basic Properties

- Excellent heat resistance
- Dimensional stability
- High gloss
- Resistant to alcohols, acids, bases, polar solvents
- High purity, low leachables
- Low water transmission rate
- Compatible N2 for PE & PP enables recyclability

Glass transition temperatures, °C(°F)
33 - 180 (91 – 356)

Modulus of elasticity, N/mm² (kpsi)
1260 – 3200 (180 – 460)

Tensile strength, N/mm² (kpsi)
25 - 63 (3.6 - 9.1)

Density, g/cm³
1.02

Water uptake, %
< 0.01

Nitrogen, cc-mil/100 in² × day, 23°C/0RH
0.5
TOPAS® COC – Market Segments

Healthcare & Diagnostic
Cartridges, syringes, vials, drug delivery devices, microplates, microfluidic devices, cuvettes, bio-chips, PCR

Consumer Electronics
Mobile light guides, windows, touch screens; sensors, flat panel displays; antennas

Packaging and Films
Food, healthcare, protective and optical films; containers and closures in personal care and consumer markets
Protective Packaging
What is Protective Packaging?

Protective packaging materials must be designed to protect the enclosed contents from damage from any variety of causes, such as moisture, shock and vibration during transportation and distribution.

Source: “Protective Packaging Solution to Address Omi-Channel Demands,” The Packaging Conference, February 2016 (Pregis).

Protective Packaging Types:

- Paper
 - Crumpled Void Fill, Padded Sheets
- Cardboard
 - Corrugated, Boxes & Profiles
- Foams
 - EPS & starch-based peanuts, mold-in-place urethanes, LDPE & HDPE foamed sheet and planks
- Inflatable Plastic Films
 - Void Fill Structures; Cellular Cushioning, Pillows and Bubble Sheets.
Protective Packaging – COC Performance

Key Benefits:
- Low N₂ & Air Permeation
- Stiffness & Strength
- “Easy” Cutting
- Improve Seal Strength
- Good Appearance
- Low Moisture Permeation
- Recycle w/PE
Protective packaging is an excellent illustrative application to showcase COC as effective and efficient polyethylene modifier.
TOPAS 8007F-600 samples were analyzed on a MOCON Multi-Tran 400 Instrument utilizing a TCD sensor. Sources: Permeability Properties of Plastics and Elastomers, Massey, 2nd Edition; various datasheets; internal data.

COC has very low nitrogen and air permeability; without the compromising moisture sensitivity of other high barrier materials.
Benefit (2): Stiffness Enhancement

Benefits for Protective Packaging:
- Enable thinner films
- Reduce stretching & deformations
- Improve machine handling
- Enable faster converting speeds

MD Tensile Modulus:
- 5-10% COC increases stiffness significantly.
- Similar linear response among polyolefins
- Efficient and effective
Benefit (3a): Cutability Enhancement

Benefits for protective packaging:
- Stronger films
- Less film distortion during cutting
- Cleaner separation along perforations

Tensile Properties:
- MD & TD Tensile Stress at Break improves
- Tensile elongation at yield is influenced by orientation
- 5-10% wt. COC reduces elongation at yield significantly
- Potential for downgauging
Benefit (3b): Linear Tear Enhancement

Benefits for Protective Packaging:
- Controlled directional linear tear
- Cleaner separation along perforations
- Less distortion

Tear Properties:
- “Bulky” COC structure enables molecular chain alignment
- Elmendorf Tear is influenced by TD & MD orientation
- 10-20% wt. COC reduces TD and MD Elmendorf Tear significantly
Benefit (4a): Heat Sealing Enhancement

Benefits for protective packaging:
- Stronger seals
- Broader heat seal window

Heat Sealing Properties:
- 10-30% COC improves ultimate seal strength
- 10-30% COC improves hot tack force
- Slight increase of SIT to 110°C
Benefit (4b): Seal Initiation vs. Modulus

COC significantly improves film modulus without compromising seal initiation temperature.
Protective Packaging - PE-COC Structures

Polyolefin Materials

- LDPE, HDPE, prefer LLDPE (any comonomer)

Monolayer

- 5-20% COC

Three Layer

- 5-20% COC in both skin layers
- 0-30% COC; more in core layer depending on nitrogen/air barrier requirements; reclaim

Five Layer (A-B-C-B-A)

- A: 5-20% COC
- B: 30-70% COC; more depending on barrier requirements
- C: 0-30% COC as needed; reclaim

Other Considerations:

- COC eliminates the need for nylon and EVOH for extended shelf-life products.
- More extruded layers enables efficient distribution of COC in the film, tailored mechanical properties, and lower cost.
Conclusions: COC Enhances Protective Packaging

Mechanical Properties
- Added stiffness of softer polymers
- Improve strength
- Reduce film extensibility and distortion
- Controllable film cutting, tear and perforation separation
- Enable downgauging

Barrier & Environment
- Very low permeability to nitrogen and air
- Low moisture absorption
- Insensitive to changes in relative humidity

Seal Properties
- Improved seal strength, hot tack with broader temperature window
TOPAS® COC Modifies Billions of Pounds of Polyethylene -- One Pound at a Time

How Can We Help You?

www.topas.com
NOTICE TO USERS: To the best of our knowledge, the information contained in this publication is accurate, however we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. All technical information and services of TOPAS Advanced Polymers, Inc. are intended for use by persons having skill and experience in the use of such information or service, at their own risk.

Further, the analysis techniques included in this publication are often simplifications and, therefore, approximate in nature. More vigorous analysis techniques and prototype testing are strongly recommended to verify satisfactory part performance. Anyone intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards.

It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication.

Properties molded parts, sheets and films can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the user is the sole responsibility of the user. The user must verify that the material, as subsequently processed, meets the requirements of the particular product or use. The user is encouraged to test prototypes or samples of the product under the harshest conditions to be encountered to determine the suitability of the materials.

Material data and values included in this publication are either based on testing of laboratory test specimens and represent data that fall within the normal range of properties for natural material or were extracted from various published sources. All are believed to be representative. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values.

We strongly recommend that users seek and adhere to the manufacturer’s current instructions for handling each material they use, and to entrust the handling of such material to adequately trained personnel only. Please call TOPAS Advanced Polymers, Inc. - hotline +1.859.746.6447 x4400 for additional technical information. Call Customer Services at +1.859.746.6447 x4402 for the appropriate Safety Data Sheets (SDS) before attempting to process our products. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist.

The products mentioned herein are not intended for use in medical or dental implants.