Thin-film barrier on foil for organic LED lamps

Ferdie van Assche, Harmen Rooms, Jasper Michels, Edward Young, Ton van Mol
Holst Centre

Gerard Rietjens, Peter van de Weijer, Piet Bouten
Philips Research Laboratories
Contents

• Research topics at the Holst Centre
• OLEDs on foil for lighting, ultra barrier specifications
• Ca-mirror test
• Crack channeling strain of a-SiNₓ:H
• Repetitive bending test on complete barriers on foil
• Conclusions
Research topics at the Holst Centre

Strategic programs: windows on application areas, guiding choices in the technology programs

Technology programs: Development of key technologies

<table>
<thead>
<tr>
<th></th>
<th>Printed Organic Lighting & Signage</th>
<th>Smart Bandage</th>
<th>Smart Blister</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Area Printing</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>Electrodes and Barriers</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>Foils Integration</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>Printed Structures on Foil</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>Organic Circuitry</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>Lithography on Foil</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>
OLEDs for lighting and signage applications
OLEDs need encapsulation

- OLEDs’ low work function cathodes oxidize rapidly

- Black spots form due to water diffusion through pinholes in Al cathode
- Black spots grow linearly in time, shelf effect
Requirements for a barrier

- **Almost hermetic**
 - maximum water vapor transmission rate estimated at \(\sim 10^{-6} \text{g/m}^2\text{day} \)

- **No black spots**
 - Low pinhole density, pinhole coverage

- **Low cost**
 - High deposition rates

- **Feasibility for R2R**
 - *Barriers should be bendable*
Approach: SiN–organic planarization layer–SiN

- **Plasma deposited amorphous hydrogenated silicon nitride (a-SiN$_x$:H)**
 - RF 13.56 MHz driven parallel plate source
 - Static substrate
 - SiH$_4$/NH$_3$/N$_2$ gas mixture, tens-hundreds of sccm
 - Pressure 0.1-1 mbar, roots pump
 - Substrate temperature 100-130°C
 - Typical deposition rate: 0.5 nm/s
 - *Intended for proof of principle of barrier configuration, plasma source not feasible for low cost production line*

- **Organic planarization layer is used to spatially separate defects**
Ca-mirror test of barriers

- Degradation of Ca layer: Ca (reflective) + -O \rightarrow CaO (transparent)
 - Measurement of WVTR down to 10^{-6} g/m2day
 - Visualisation of defects

- Initial tests on unbended barriers

Test configuration
Ca-mirror test of barriers

67 days, 20°C/50%rh

No decay, test ongoing

25 days, 60°C/90%rh

WVTR = $5 \cdot 10^{-5}$ g/m²day, local failure after three weeks for most samples

- No measurable decay after 2 months at ambient conditions
- At 60°C/90%: WVTR = $5 \cdot 10^{-5}$ g/m²day, defects appear only after 3 weeks for most samples
- Estimated WVTR at ambient conditions < 10^{-6}g/m²day
Critical strain measurement method

- 2-point bending test on Carbon coated a-SiNₓ:H
 - Maximum tensile strain on outer edge
 - Electrical resistance monitored to detect crack formation Ca (reflective) + -O → CaO (transparent)

Bouten, Leterrier et al, Flexible flat panel displays. 2005, John Wiley & Sons, p.528
Bare PEN foil

- Resistance increase at \(\varepsilon = 1.2\% \)
Critical strain of a-SiN$_x$:H films

- Critical strain of a-SiN$_x$:H on PEN foil: $\varepsilon_c = 0.6$-0.8%
 - For a 125 μm thick foil, this corresponds to radius of 11 mm
- Identical films: spread in ε_c may be caused by defect distribution
Testing of complete barrier: bending test setup

- Minimum bending radius of 14 mm
- 5-100 bends
- Compressive and tensile strain on barrier
- Ca test performed before and after bending

Circular shape:
\[
\frac{a}{b} \approx \frac{\alpha - \sin \alpha}{\sin \alpha - \alpha \cos \alpha}
\]
Bending test of (not fully optimized) barrier

- Bending radii: ~ 10 cm—1.4 cm, 5—100 times
- WVTR before bending $7 \cdot 10^{-5} - 1 \cdot 10^{-4} \text{g/m}^2\text{day}$ (1 week at 20°C/50%rH)
- WVTR after bending still in same range, no white spots
Critical bending radius of barrier stack

- More close look reveals critical bending radius of \(~20\) mm
- Amount of bending cycles not important
- Factor of 2 increase suggests failure of top \(a\text{-SiN}_x\text{H}\)

Comparison WVTR before and after bending

<table>
<thead>
<tr>
<th>Ratio WVTR after/before bending</th>
<th>No bending</th>
<th>5 times</th>
<th>10 times</th>
<th>50 times</th>
<th>100 times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ratio of unbended samples not equal to 1. This may be due non-linear Ca transparency vs WVTR in initial oxidation stage.
Bending test on optimized barrier, 60°C/90%

- More aggressive bending radius/larger amount of cycles: 1.4 cm, 100–400 times
- At 60°/90% WVTR = 5·10^{-5} g/m²day
- After (too aggressive) bending immediate local decay

- To be repeated at more gentle bending angles
Conclusions

- Barriers on PEN foil have been produced with a WVTR of 5×10^{-5} g/m2day at 60°C/90%rh conditions
- At ambient conditions no decay visible after 2 months, WVTR estimated $<10^{-6}$g/m2day
- Barrier bendable down to a minimum radius of 20 mm, hence suitable for R2R
- A crack channeling strain of 0.6-0.8% has been measured for 300 nm thick a-SiN$_x$:H on PEN foil

Near future

- Bending testing of encapsulated OLEDs
- Scaling up to pilot sheet-to-sheet, then R2R line for barrier and cathode
 - Implementation of microwave plasma source
Acknowledgements

Holst TP2 team
- Joris de Riet
- Jan Manders

MiPlaza team
- Jan Janssen
- Ibrahima Faye
- Paul Aerts
- Tom Bernards
- Martin Hack
- Marc Kuider
- Martine Meulendijk
- Pieter Klaassen

Industrial Residents
- Erik Dekempeneer (Bekaert)
- Roger Degrijse (Bekaert)
- Rudi van Paemel (U Gent)
- Herbert Lifka (Philips)
- Cristina Tanase (Philips)
- Dimitar Kotzev (Huntsman)
- Richard Frantz (Huntsman)
- Emilie Galand (Huntsman)
- Mathias Graeber (Huntsman)

Financially supported by the Dutch Ministry of Economic Affairs, Philips, Bekaert, OTB Display and Huntsman
Questions or Remarks?

Thank you for your attention!

Ferdie van Assche, MSc
T: + 31 6 12 642 246
E: ferdie.vanassche@tno.nl